1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
10

Un bombero alejado d = 31.0 m de un edificio en llamas dirige un chorro de agua desde una manguera contra incendios a nivel del

suelo con un ángulo de θi = 33.0° arriba de la horizontal como se muestra en la figura siguiente. Si la rapidez del chorro cuando sale de la manguera es vi = 40.0 m/s, ¿a qué altura (en m) golpeará el edificio? m
Physics
1 answer:
Mila [183]3 years ago
3 0

Answer:

El chorro golpea el edificio a una altura de 15.943 metros con respecto al suelo.

Explanation:

El chorro de agua exhibe un movimiento parabólico, dado que este tiene una inclinación inicial y la única aceleración es debida a la gravitación terrestre. Las ecuaciones cinemáticas que modelan el fenómeno son:

Distancia horizontal (en metros)

x = x_{o} + v_{o}\cdot t \cdot \cos \theta

Donde:

x_{o} - Posición horizontal inicial, medida en metros.

t - Tiempo, medido en segundos.

v_{o} - Velocidad inicial, medida en metros por segundo.

\theta - Angulo de inclinación del chorro de agua, medido en grados sexagesimales.

Distancia vertical (en metros)

y = y_{o} + v_{o}\cdot t \cdot \sin \theta + \frac{1}{2}\cdot g \cdot t^{2}

Donde:

y_{o} - Posición vertical inicial, medida en metros.

g - Constante gravitacional, medida en metros por segundo al cuadrado.

Partiendo de la primera ecuación, se despeja el tiempo:

t = \frac{x - x_{o}}{v_{o}\cdot \cos \theta}

Si x = 31\,m, x_{o} = 0\,m, v_{o} = 40\,\frac{m}{s} and \theta = 33^{\circ}, entonces:

t = \frac{31\,m-0\,m}{\left(40\,\frac{m}{s} \right)\cdot \cos 33^{\circ}}

t = 0.924\,s

La altura máxima se calcula por sustitución directa de términos en la segunda ecuación. Si y_{o} = 0\,m, v_{o} = 40\,\frac{m}{s}, t = 0.924\,s y g = -9.807\,\frac{m}{s^{2}}, entonces:

y = 0\,m + \left(40\,\frac{m}{s} \right)\cdot (0.924\,s)\cdot \sin 33^{\circ} + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (0.924\,s)^{2}

y = 15.943\,m

El chorro golpea el edificio a una altura de 15.943 metros con respecto al suelo.

You might be interested in
Which of these results in kinetic energy of an object? (1 point)
Aleksandr [31]
Motion I’m pretty sure
7 0
3 years ago
Read 2 more answers
If the Earth and distant stars were stationary (motionless) in space, what would we observe about the wavelength from these star
dangina [55]
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.

2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:
f'= \frac{c}{c+v_s} f_0
where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.
6 0
3 years ago
Suppose the rocket in the Example was initially on a circular orbit around Earth with a period of 1.6 days. Hint (a) What is its
ruslelena [56]

Answer:

a

The orbital speed is v= 2.6*10^{3} m/s

b

The escape velocity of the rocket is  v_e= 3.72 *10^3 m/s

Explanation:

Generally angular velocity is mathematically represented as

            w = \frac{2 \pi}{T}

Where T is the period which is given as 1.6 days = 1.6 *24 *60*60 = 138240 sec

       Substituting the value

         w = \frac{2 \pi}{138240}

             = 4.54*10^ {-5} rad /sec

At the point when the rocket is on a circular orbit  

   The gravitational force =  centripetal force and this can be mathematically represented as

              \frac{GMm}{r^2} = mr w^2

Where  G is the universal gravitational constant with a value  G = 6.67*10^{-11}

            M is the mass of the earth with a constant value of M = 5.98*10^{24}kg

            r is the distance between earth and circular orbit where the rocke is found

               Making r the subject

                     r = \sqrt[3]{\frac{GM}{w^2} }

                        = \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }

                        = 5.78 *10^7 m

The orbital speed is represented mathematically as

                   v=wr

Substituting value

                  v= (5.78*10^7)(4.54*10^{-5})

                     v= 2.6*10^{3} m/s    

The escape velocity is mathematically represented as

                            v_e = \sqrt{\frac{2GM}{r} }

Substituting values

                             = \sqrt{\frac{2(6.67*10^{-11})(5.98*10^{24})}{5.78*10^7} }

                             v_e= 3.72 *10^3 m/s

7 0
3 years ago
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and
nikitadnepr [17]

Complete question:

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.

Answer:

The exit velocity is 629.41 m/s

Explanation:

Given;

initial temperature, T₁ = 1200K

initial pressure, P₁ = 150 kPa

final pressure, P₂ = 80 kPa

specific heat at 300 K, Cp = 1004 J/kgK

k = 1.4

Calculate final temperature;

T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}

k = 1.4

T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}}\\\\T_2 = 1200(\frac{80}{150})^{\frac{1.4-1 }{1.4}}\\\\T_2 = 1002.714K

Work done is given as;

W = \frac{1}{2} *m*(v_i^2 - v_e^2)

inlet velocity is negligible;

v_e = \sqrt{\frac{2W}{m} } = \sqrt{2*C_p(T_1-T_2)} \\\\v_e = \sqrt{2*1004(1200-1002.714)}\\\\v_e = \sqrt{396150.288} \\\\v_e = 629.41  \ m/s

Therefore, the exit velocity is 629.41 m/s

6 0
3 years ago
The space pod might be lost in space because it is traveling in the wrong direction away from the space station and there is..
KATRIN_1 [288]
You would have to pick the word c because that is the answer
3 0
2 years ago
Other questions:
  • All of the orbitals in a given shell have the same value of the ______ quantum number
    15·1 answer
  • What's the steady state theory
    11·2 answers
  • Lead atoms occupy a volume of 3 x 10-29 m3. Each atom contributes two free electrons. Calculate the Fermi velocity of lead.
    8·1 answer
  • Seismographs measure the arrival times of earthquakes with a precision of 0.125 s. To get the distance to the epicenter of the q
    15·1 answer
  • Which of the following is not a benefit of improved cardio-respiratory fitness?
    7·1 answer
  • I need help with this
    14·1 answer
  • A downed pilot fires a flare from a flare gun. The flare an initial speed of 250 m/s and is fired at an angle of 35° to the grou
    13·2 answers
  • What is the restoring force of a spring with a spring constant of 4a and a stretched displacement of 3b?
    9·2 answers
  • Heated lithium atoms emit photons of light with an energy of 2.961 × 10−19 J. Calculate the frequency and wavelength of one of t
    11·1 answer
  • I'll mark brainiest if you help me
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!