Answer:
118.3 J
Explanation:
Givens:
m = 1.4 kg
V = 13 m/s
Formula for kinetic energy:
KE = (1/2)*(m)*(v)^2
KE = .5*(1.4 kg)*(13 m/s)^2
KE 118.3 J
J = Joules
Let the mass of 2500 kg car be
and it's velocity be
and the mass of 1500 kg car be
and it's velocity be
.
After the bumping the mass be M and it's velocity be V.
By law of conservation of momentum we have

2500 * 5 + 1500 * 1=4000 * V
V = 14000/4000 = 7/2 = 3.5 m/s
So the velocity of the two-car train = 3.5 m/s
The correct option is B.
The length of an object, the mass of an object and the rate of time passage for an object can change depending on the situation which the object is subject to. For instance in space, the mass and the velocity of an object usually change. But, the value of the speed of light in the space is the same for all observers regardless of the motion of an object, that is, the speed of light is a constant.<span />
Answer:
The period of motion of new mass T = 0.637 sec
Explanation:
Given data
Mass of object (m) = 9 gm = 0.009 kg
Δx = 3.5 cm = 0.035 m
We know that spring force is given by
F = m g
F = 0.009 × 9.81 = 0.08829 N
Spring constant


k = 2.522 
New mass
= 26 gm = 0.026 kg
Now the period of motion is given by


T = 0.637 sec
This is the period of motion of new mass.