Large bodies of water<span> such as oceans, seas, and large lakes </span>affect<span> the </span>climate<span> of an area. </span>Water<span> heats and cools more slowly than land. Thus, in the summer, the </span>coastal<span> regions </span>will<span> stay cooler and in winter warmer. A more moderate </span>climate<span> with a smaller temperature range </span>is<span> created.</span>
<span>So we want to know which statement is true for the body of mass m=2000kg that is lifted to a height of h=15m in t=15 s. Lets calculate each of the following: Gravity force on the body is F=m*g=2000*9.81=19620 N so a is FALSE. Potential energy of the body when it is lifted to the height of 15 m is Ep=m*g*h=2000*9.81*15=294300 J so b is FALSE. Work to lift the body is: W=Fg*h=2000*9.81*15= Ep=294300 J so c is FALSE. Power P=W/t=294300/15=19620 W So d is TRUE. </span>
Answer:
the answer is B
Melting point, temperature at which the solid and liquid forms of a pure substance can exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change.
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
Answer:
Snell's Law states
Ni sin i = Nr sin r
Judging from the question the source of the ray is in the water (directed up)
or NI = 1 / sin 49 Ni = 1.325 deg the critical angle
From inside the pond:
Nr = 1.325 * sin 45 / 1 = 94 deg
So refraction can occur outside the pond and you do not have total internal refection.