Heat = mass (m)*specific heat (C)* change in temperature (Δt)
In the current scenario,
mass = 200 g = 0.2 kg
C = 0.11 kCal/kg.°C
Δt = 10 °C
Therefore,
Heat = 0.2*0.11*10 = 0.22 kCal = 0.22*4186 J = 920.92 J
Answer: |F| = 1.28 x 10⁵ N
Explanation:
an impulse results in a change of momentum
FΔt = mΔv
F = m(vf - vi)/t
F = 2000(0 - 32) / 0.5
F = -128,000
|F| = 1.28 x 10⁵ N
Answer:
<em>Well, Your answer will be is </em><em>Work. </em><em>Because, When a spring is compressed, the energy changes from kinetic to potential. This change is caused by work. </em>
<em>Good Luck!~</em>

The effective temperature of a star is relative to the
fourth root of the luminosity and is contrariwise proportional to the square
root of the radius.
L = k R² T⁴
If the radius remains continuous, while the luminosity doubles, the temperature
must increase by a factor of the fourth root of two.
If L → 2L, then T → 1.189207115 T
So the answer is approximately 1.19 times.
Increase in speed or rate