Neither set of choices is correct.
If the distance is tripled, then the forces decrease to
1/9 Fg. and. 1/9 Fe.
Note. When the objects are charged, the gravitational force Fg can almost always be ignored, since Fe is like 10^40 greater when the quantities of mass and charge are similar.
Answer:
48.4 km, 34.3° north of east
Explanation:
Let's say east is the +x direction and north is the +y direction.
Adding up the x components of the vectors:
x = 20 cos 60 + 30 + 0
x = 40 km
Adding up the y components of the vectors:
y = 20 sin 60 + 0 + 10
y = 27.3 km
The magnitude of the displacement is:
d = √(x² + y²)
d = 48.4 km
The direction is:
θ = atan(y/x)
θ = 34.3° north of east
Frequency = speed ÷ wavelength
= 330m/s ÷ 2.5m
= 132 Hz
Considering conservation of momentum;
m1v1 + m2v2 = m3v3
In which,
m1 = mass of snowball 1 = 0.4 kg
v1 = velocity of snowball 1 = 15 m/s
m2 = mass of snowball 2 = 0.6 kg
v2 = velocity of snow ball 2 = 15 m/s
m3 = combined mass = 1 kg
v3 = velocity after comination
Therefore;
0.4*15 + 0.6*15 = 1*v3
v3 = 6+9 = 15 m/s
KE = 1/2mv^2
Then,
KE1 = 1/2*0.4*15^2 = 45 J
KE2 = 1/2*0.6*15^2 = 67.5 J
KE3 = 1/2*1*15^2 = 112.5 J
Therefore, KE3 (kinetic energy after collision) = K1+K2 {kinetic energy before collision). And thus it is 100%.
Answer:
B - spring scale and meterstick
Explanation:
The work done by the force of gravity as the object falls is equal to the potential energy of the object.
We know that the gravitational potential energy(PE) of an object is obtained by;
PE =mgΔh
Where;
m = mass of the object
g = acceleration due to gravity
h= height of the object
The spring scale is needed to measure the mass of the object while the meterstick measures the Δh in meters.