Answer:
6
Step-by-step explanation:
Given :
Sample size, n = 36
Sample variance, s² = 1296
The estimated standard error can be obtained using the relation :
Standard Error, S. E = standard deviation / √n
Standard deviation, s = √1296 = 36
S.E = 36/√36
S.E = 36/6
S.E = 6
Hence, estimated standard error = 6
150 x 12 = 1800
55 x 12 = 660
1800 + 660 + 45000 = 47,460
27 + x is the simplified expression.
The rate at which the water from the container is being drained is 24 inches per second.
Given radius of right circular cone 4 inches .height being 5 inches, height of water is 2 inches and rate at which surface area is falling is 2 inches per second.
Looking at the image we can use similar triangle propert to derive the relationship:
r/R=h/H
where dh/dt=2.
Thus r/5=2/5
r=2 inches
Now from r/R=h/H
we have to write with initial values of cone and differentiate:
r/5=h/5
5r=5h
differentiating with respect to t
5 dr/dt=5 dh/dt
dh/dt is given as 2
5 dr/dt=5*-2
dr/dt=-2
Volume of cone is 1/3 π
We can find the rate at which the water is to be drained by using partial differentiation on the volume equation.
Thus
dv/dt=1/3 π(2rh*dr/dt)+(
*dh/dt)
Putting the values which are given and calculated we get
dv/dt=1/3π(2*2*2*2)+(4*2)
=1/3*3.14*(16+8)
=3.14*24/3.14
=24 inches per second
Hence the rate at which the water is drained from the container is 24 inches per second.
Learn more about differentaiation at brainly.com/question/954654
#SPJ4