Answers:
1. B.)
2. Both A.) and B.)
3. A.)
Step-by-step explanation:
1. Ions in gas phase
A plasma is a gas consisting of electrons and positively charged ions.
Because the particles are ions and electrons, rather than neutral atoms or molecules as in ordinary gases, scientists consider a plasma to be a fourth state of matter<em>.</em>
2. Kinetic Molecular Theory
Both activities illustrate the postulate.
A.) If the particles are extremely small and far apart, most of the volume of a gas is empty space. That's why it's easy to push the plunger of a capped nozzle syringe containing a gas.
B.) If the particles are far apart, it's easy for a coloured gas to spread into an inverted jar placed on top of a jar containing the gas.
3. Hot air balloon
The high temperature in the balloon makes the gas molecules spread apart according to Charles's law, because this law describes how a gas will behave at constant pressure.
As the hot air escapes from the vent, the combined mass of balloon + hot air becomes less than the mass of cold air that it displaces, and the balloon rises.
B.) is <em>wrong</em>. Boyle's law applies only when both the number of moles and the temperature remain constant.
Heat energy xxxxxxxxxxxxxx
Answer:
<h2>6 m/s²</h2>
Explanation:
The acceleration of an object given it's velocity and time taken can be found by using the formula

where
a is the acceleration
v is the velocity
t is the time
From the question we have

We have the final answer as
<h3>6 m/s²</h3>
Hope this helps you
Answer:
Approximately
(note that
.)
Explanation:
The molarity of a solution gives the number of moles of solute in each unit volume of the solution. In this
solution in water,
Let
be the number of moles of the solute in the whole solution. Let
represent the volume of that solution. The formula for the molarity
of that solution is:
.
In this question, the volume of the solution is known to be
. That's
in standard units. What needs to be found is
, the number of moles of
in that solution.
The molar mass (formula mass) of a compound gives the mass of each mole of units of this compound. For example, the molar mass of
is
means that the mass of one mole of
.
For this question,
.
Calculate the molarity of this solution:
.
Note that
(one mole per liter solution) is the same as
.