Answer: 13 grams
Explanation:
The quantity of heat energy (Q) released from a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 202.8 Joules
Mass of silver = ?
C = 0.240 J/g °C.
Φ = 65°C
Then, Q = MCΦ
202.8J = M x 0.240 J/g °C x 65°C
202.8J = M x 15.6 J/g
M = (202.8J / 15.6 J/g)
M = 13 g
Thus, the mass of silver is 13 grams
Answer:
C) The most efficient fusion reactors would use heavier forms of hydrogen.
Explanation:
From the information presented to us in the question, the third sentence reveals that heavier forms of hydrogen produces larger amount of energy and most importantly reacts more efficiently when fusion occurs.
<em>In fact, the </em><u><em>heavy isotopes of hydrogen—deuterium and tritium—react more efficiently</em></u><em> with each other, and, when they do undergo fusion, they yield more energy per reaction than do two hydrogen nuclei. </em>
Explanation:
Volume of the stock solution is
= ?
Initial concentration of ampicillin is
= 100 mg/ml
Final volume (
) = 30 ml
Final concentration of ampicillin (
) = 25 mg/ml
Therefore, calculate the volume of given stock as follows.
= 
Now, putting the given values into the above formula as follows.
= 
=
= 7.5 ml
Now, we will calculate the volume of water added into it as follows.
Volume of water added = 
= 30 ml - 7.5 ml
= 22.5 ml
Thus, we can conclude that required solution is 22.5 ml of deionized water.
Answer:
8kJ/mol
Explanation:
since the forward reaction is -8kJ/mol, the backward reaction has the same enthalphy but reversed