I think the critters ate 5 1/2 packages of Toni’s oatmeal.
If he ate half as much as the others you should total up the others and divide it by 2.
3 + 2 + 6 = 11 11 divided by 2 = 5 1/2
I hope you find this helpful.
14 = 6x4 + b
14 = 24 + b
-10 = b
Hope this is accurate & helpful! Let me know if there are any errors or if you have any additional questions.
Answer:
The relative frequency is found by dividing the class frequencies by the total number of observations
Step-by-step explanation:
Relative frequency measures how often a value appears relative to the sum of the total values.
An example of how relative frequency is calculated
Here are the scores and frequency of students in a maths test
Scores (classes) Frequency Relative frequency
0 - 20 10 10 / 50 = 0.2
21 - 40 15 15 / 50 = 0.3
41 - 60 10 10 / 50 = 0.2
61 - 80 5 5 / 50 = 0.1
81 - 100 <u> 10</u> 10 / 50 = <u>0.2</u>
50 1
From the above example, it can be seen that :
- two or more classes can have the same relative frequency
- The relative frequency is found by dividing the class frequencies by the total number of observations.
- The sum of the relative frequencies must be equal to one
- The sum of the frequencies and not the relative frequencies is equal to the number of observations.
![y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\ y''(0)=20\cdot0^3=0](https://tex.z-dn.net/?f=y%3Dx%5E5-3%5C%5C%20y%27%3D5x%5E4%5C%5C%5C%5C%205x%5E4%3D0%5C%5C%20x%3D0%5C%5C%200%5Cin%20%5B-2%2C1%5D%5C%5C%5C%5C%20y%27%27%3D20x%5E3%5C%5C%5C%5C%0Ay%27%27%280%29%3D20%5Ccdot0%5E3%3D0)
The value of the second derivative for

is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of

is always positive for

. That means at

there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval
![[-2,1]](https://tex.z-dn.net/?f=%5B-2%2C1%5D)
.
The function

is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.