His rate is 4.5 miles per hour. It would take him 4 hours to hike 18 miles. He would have traveled 31.5 miles in 7 hours.
Answer:
False
Step-by-step explanation:
Answer:
x = 7°
Step-by-step explanation:
3x° - 53° = x° + 67°
2x° = 14°
x° = 7°
Consider the contrapositive of the statement you want to prove.
The contrapositive of the logical statement
<em>p</em> ⇒ <em>q</em>
is
¬<em>q</em> ⇒ ¬<em>p</em>
In this case, the contrapositive claims that
"If there are no scalars <em>α</em> and <em>β</em> such that <em>c</em> = <em>α</em><em>a</em> + <em>β</em><em>b</em>, then <em>a₁b₂</em> - <em>a₂b₁</em> = 0."
The first equation is captured by a system of linear equations,

or in matrix form,

If this system has no solution, then the coefficient matrix on the right side must be singular and its determinant would be

and this is what we wanted to prove. QED
Answer:
{x,y} = {6/5,23/10}
Step-by-step explanation:
[1] 7x + 2y = 13
[2] 4x + 4y = 14 <---------- linear equations given
Graphic Representation of the Equations : PICTURE
2y + 7x = 13 4y + 4x = 14
Solve by Substitution :
// Solve equation [2] for the variable y
[2] 4y = -4x + 14
[2] y = -x + 7/2
// Plug this in for variable y in equation [1]
[1] 7x + 2•(-x +7/2) = 13
[1] 5x = 6
// Solve equation [1] for the variable x
[1] 5x = 6
[1] x = 6/5
// By now we know this much :
x = 6/5
y = -x+7/2
// Use the x value to solve for y
y = -(6/5)+7/2 = 23/10
// Plug this in for variable y in equation [1]
[1] 7x + 2•(-x +7/2) = 13
[1] 5x = 6
// Solve equation [1] for the variable x
[1] 5x = 6
[1] x = 6/5
// By now we know this much :
x = 6/5
y = -x+7/2
// Use the x value to solve for y
y = -(6/5)+7/2 = 23/10