The transfer of internal energy in the form of electromagnetic waves.
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
Answer:
9.60 m/s
Explanation:
The escape speed of an object from the surface of a planet/asteroid is given by:

where
G is the gravitational constant
M is the mass of the planet/asteroid
R is the radius of the planet/asteroid
In this problem we have
is the density of the asteroid
is the volume
So the mass of the asteroid is

The asteroid is approximately spherical, so its volume can be written as

where R is the radius. Solving for R,
![R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3(3.09\cdot 10^{12} m^3)}{4\pi}}=9036 m](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%283.09%5Ccdot%2010%5E%7B12%7D%20m%5E3%29%7D%7B4%5Cpi%7D%7D%3D9036%20m)
Substituting M and R inside the formula of the escape speed, we find:

Answer: unless it's acted upon by an external force
Explanation: Newton first law of motion State that an object will continue in it state of rest or in motion, unless it is been acted upon by an external force