1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
9

A string along which waves can travel is 4.36 m long and has a mass of 222 g. The tension in the string is 60.0 N. What must be

the frequency of traveling waves of amplitude 6.43 mm for the average power to be 50.4 W?
Physics
1 answer:
lora16 [44]3 years ago
7 0

Answer:

frequency is 195.467 Hz

Explanation:

given data

length L = 4.36 m

mass m = 222 g = 0.222 kg

tension T = 60 N

amplitude A = 6.43 mm = 6.43 × 10^{-3} m

power P = 54 W

to find out

frequency f

solution

first we find here density of string that is

density ( μ )= m/L ................1

μ = 0.222 / 4.36  

density μ is 0.050 kg/m

and speed of travelling wave

speed v = √(T/μ)       ...............2

speed v = √(60/0.050)

speed v = 34.64 m/s

and we find wavelength by power that is

power = μ×A²×ω²×v  /  2     ....................3

here ω is wavelength put value

54 = ( 0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 )   /  2

0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 = 108

ω² = 108 / 7.160  × 10^{-5}

ω = 1228.16 rad/s

so frequency will be

frequency = ω / 2π

frequency = 1228.16 / 2π

frequency is 195.467 Hz

You might be interested in
Please help me answer these questions ASAP !
vodomira [7]
1. Layer A is the oldest. The law of superposition says that the oldest layer is at the bottom whilst the newest is at the top.
2. The law of original horizontality.
3. The law of original lateral continuity.
3 0
3 years ago
A 2-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to h
timofeeve [1]

To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.

PART A) Normal Force.

F_n = \frac{mv^2}{r}

N+mgcos\theta = \frac{mv^2}{r}

Here,

Normal reaction of the ring is N and velocity of the ring is v

N+mgcos\theta = \frac{mv^2}{r}

N+Wcos\theta = \frac{W}{g} (\frac{v^2}{r})

N+2cos30\° = \frac{2}{32.2}*\frac{10^2}{2}

N = 1.374lb

PART B) Acceleration

F_t = ma_t

-mgsin\theta = ma_t

-W sin\theta = \frac{W}{g} a_t

-2Sin30\° = (\frac{2}{32.2})a_t

a_T = -16.10ft/s^2

Negative symbol indicates deceleration.

<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>

8 0
3 years ago
The manufacturer of a bulletproof vest wants the vest to be able to stop a bullet with a mass of 0.4 kg and a velocity of 1800 m
11111nata11111 [884]
We know that momentum = mass times velocity
So a. 720 kgm/s
7 0
3 years ago
Three resistors of 100 W, 3900 W, and 1000 W are connected in series across a 200-V battery. What is the voltage drop across the
Gala2k [10]

Answer:

40 V

Explanation:

 I will assume that  the resistors are

           100 and 3900 and 1000 OHMS    <=====(NOT W)

In series , the resistances add together 100 + 3900 + 1000 = 5000 ohms total

V = IR

I = V / R      so the total current will be   200 v / 5000 ohms = .04 amps

                   this is the current through all of the resistors

      so for the   1000 ohm resistor     V = IR     .04 (1000) = 40 V

7 0
2 years ago
Electrical energy is used to turn the blades of a fan. The amount of energy transformed is seen here: 750 j electrical energy is
MAVERICK [17]

Here is the energy that is left after the quantity of energy is transformed: 750 j of electrical energy is changed into 400 j of kinetic or mechanical energy, which is then turned into 0.32 j of efficient energy.

To run the fan, electrical energy is utilized.

Here, under the specified circumstances, 750 J of electrical energy is utilized to operate the fan, which is transformed into 400 J of kinetic energy. As a result, 350 J of energy is wasted due to various frictional and resistive losses.

Therefore, we may conclude that only 400 J of the 750 J available energy is used to power the fan, with the remaining energy being wasted as a result of friction.

Additionally, we can state that this fan's effectiveness will be

n = Useful ÷ Total

n = 400 ÷ 750

n = 8 ÷ 25

n = 0.32

Learn more about energy at

brainly.com/question/15915007?referrer=searchResults

#SPJ4

4 0
1 year ago
Other questions:
  • A 15m long wire is placed horizontally on the surface of a liquid and is gently pulled up with the force of 60N to keep the wire
    5·1 answer
  • Thandy is looking at two cells under the microscope.One is a human cheek cell and the other is a leaf mesophyll cell from a plan
    12·1 answer
  • A student buys a 5000 Btu window air conditioner for his apartment bedroom. He monitors it for one hour on a hot day and determi
    12·1 answer
  • A rifle of mass 2 kg is suspended by strings. The rifle fires a bullet of mass 0.01 kg at a speed of 200 m/s. The recoil velocit
    14·1 answer
  • ou are unloading a refrigerator from a delivery van. The ramp on the van is 5.0 m long, and its top end is 1.4 m above the groun
    9·1 answer
  • A 12 kg box is at rest on your kitchen counter, which your cat is pawing at with a horizontal force of 40 N. If the coefficient
    12·1 answer
  • Sigma F = T-10m but a = 0 in the equation sigma F = ma
    12·1 answer
  • Method
    11·1 answer
  • Elements in Group<br> are common alkaline earth metals.<br> Answer here
    7·1 answer
  • A car travels at a constant speed around a circular track whose radiu is 2.6 km. The goes once arond the track in 360s . What is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!