Answer:
157.8 J
Explanation:
m = mass of the cylinder = 7 kg
h = height difference in top and bottom of the incline = 2.3 m
g = acceleration due to gravity = 9.8 m/s²
TE = Total Energy at the bottom
PE = Gravitational potential energy at the top
Using conservation of energy
Total Energy at the bottom = Gravitational potential energy at the top
TE = PE
TE = m g h
TE = (7) (9.8) (2.3)
TE = 157.8 J
Answer:
The metabolic power for starting flight=134.8W/kg
Explanation:
We are given that
Mass of starling, m=89 g=89/1000=0.089 kg
1 kg=1000 g
Power, P=12 W
Speed, v=11 m/s
We have to find the metabolic power for starting flight.
We know that
Metabolic power for starting flight=
Using the formula
Metabolic power for starting flight=
Metabolic power for starting flight=134.8W/kg
Hence, the metabolic power for starting flight=134.8W/kg
Answer: Option B. R = (1/2)gt^2
Explanation:
S = R (horizontal distance)
V^2 = 2gS
V^2 = 2gR
R = V^2 / 2g
But V = gt
R = (gt)^2 / 2g
R = (g^2 x t^2) / 2g
R = gt^2 / 2
But t^2 = 2h/g
R = ( g x 2h/g) / 2
R = h
But h = (1/2)gt^2
R = h = (1/2)gt^2