Answer and Explanation:
FFD is the distance between the film on which the image is obtained and the center of the anode tube. The magnification and resolution of the image depends on the FFd By varying the FFD we can change the magnification and resolution of the image. The standard FFD is about 100 centimeters.
New studies have found that by changing the FFD to 130 cm the radiation dosage reduces while the image quality remains practically the same.
The forces in some car crashes are greater than others; therefore, the body can be more severely injured by greater and more powerful forces. I hope this helped! :^)
<span>Since the equation is F = ma the acceleration would change by a factor of 2, since a = v/2. The force would double.</span>
Answer:
3.91
Explanation:
Given that
Final reading of the voltmeter, V2 = 45 v
Initial reading of the voltmeter, V1 = 11.5 v
The dielectric constant k, of a material is usually given as
k = V2/V1
k = 45 / 11.5
k = 3.91
Therefore, the dielectric constant of the material as we've calculated above is sure to be 3.91.
I hope that helps you understand
Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.