Answer:
a) a = 2.383 m / s², b) T₂ = 120,617 N
, c) T₃ = 72,957 N
Explanation:
This is an exercise of Newton's second law let's fix a horizontal frame of reference
in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.
a) request the acceleration of the system
we can take the sledges together and write Newton's second law
T = (m₁ + m₂ + m₃) a
a = T / (m₁ + m₂ + m₃)
a = 143 / (10 +20 +30)
a = 2.383 m / s²
b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg
on the sled of m₁ = 10 kg
T - T₂ = m₁ a
in this case T₂ is the cable tension
T₂ = T - m₁ a
T₂ = 143 - 10 2,383
T₂ = 120,617 N
c) The cable tension between the masses of 20 and 30 kg
T₂ - T₃ = m₂ a
T₃ = T₂ -m₂ a
T₃ = 120,617 - 20 2,383
T₃ = 72,957 N
Answer:
the correct would be c
Explanation:
a magnet will always have a north and a south so if you cut the magnet in half the north part would have a south on the opposite end and vice versa .
About 21c because it also depends on the weather outside
they are added vectorially. If htere is a resultant force, the thing acclerates. If they vectorially add to zero, thing doesn't move
Answer:

Explanation:
In this case, since the charged particle moves in circular motion, the centripetal force is equivalent to the magnetic force.
