<h2>The acceleration of car is 0.2 ms⁻²</h2>
Explanation:
When the car moves , the distance covered is calculated by the relation
S = u t +
a t²
In this question u = 0 , because car was at rest initially
Thus S =
a t²
here S is displacement and a is the acceleration of car
Therefore 360 =
a ( 60 )²
Because time taken is one minute or 60 seconds
Therefore a = 
or a = 0.2 m s⁻²
Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
Answer:
search up the kinetic energy and potential energy etc. then take them and look at the characteristica are they the same? What makes them similar? Why are they different ? How? Then add the chemical nuclear and electrical changes it creates. Now the rest! There you’ve got this! If you need support I’m here! Hope this helped!
Explanation:
The answer is C but man if you have leak or a meltdown good luck to anyone downstream.
Answer:
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era.
Explanation:
The Mesozoic era was an era where numerous organisms started to develop in very unique and more advanced ways, both the animals and the plants. In the last period of the Mesozoic, the Cretaceous, the first flowering plants started to appear on the scene. This was revolutionary trait of the plants, and soon these plants started to occupy more and more space and became one of the dominant organisms on the planet. Other important evolution that took place in this period are the appearance of the dinosaurs and the mammals, both becoming the dominant animals on the planet, first the dinosaurs, after that the mammals.