Answer:
La velocidad media es 5
, que equivale a 1.389 
Explanation:
La velocidad es una magnitud física que expresa la relación entre el espacio recorrido por un objeto y el tiempo empleado para ello.
La velocidad media relaciona el cambio de la posición con el tiempo empleado en efectuar dicho cambio. Por lo que se calcula como la distancia recorrida por un objeto dividido por el tiempo transcurrido:

En este caso:
- distancia= 10 km= 10,000 m (siendo 1 km= 1,000 m)
- tiempo= 2 h= 7,200 s (siendo 1 h= 3,600 s)
Entonces, reemplazando en la definición de velocidad media:

Resolviendo se obtiene:

<u><em>La velocidad media es 5 </em></u>
<u><em>, que equivale a 1.389 </em></u>
<u><em></em></u>
Any of the above depending on the direction of forces
<span>Its the phosphorus cycle</span>
Answer:
The magnetic field strength is 0.086 T
The maximum kinetic energy is
J
Explanation:
Given:
Frequency
Hz
(A)
The magnetic field related to cyclotron is given by,

Where
mass of electron
kg,
C

T
Therefore, the magnetic field strength is 0.086 T
(B)
Diameter of orbit
m
Radius of orbit
m
The maximum kinetic energy is given by,
KE = 
Where 
KE = 
KE = 
KE =
J
Therefore, the maximum kinetic energy is
J
Answer:
frequency of the mass motion
≅ 1.2 Hz
Explanation:
Given that:
Mass m = 1.5 kg
Amplitude A = 0.50 m
Spring constant k = 85 n/m
The frequency can be calculated by using the formula:


Hz
frequency of the mass motion
≅ 1.2 Hz