Answer:
Step-by-step explanation:
(x - 4)
What you are being asked to do is find the exact same binomial in the top as is in the bottom.
But there's a small catch. You must stipulate that x cannot equal 4. If it does, then you will get 0/0 which is undefined. You can't have that happening -- not at this level.
Any other value for x is fine.
Answer:
A), B) and D) are true
Step-by-step explanation:
A) We can prove it as follows:

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that
. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then
.
C) Consider
. This set is orthogonal because
, but S is not orthonormal because the norm of (0,2) is 2≠1.
D) Let A be an orthogonal matrix in
. Then the columns of A form an orthonormal set. We have that
. To see this, note than the component
of the product
is the dot product of the i-th row of
and the jth row of
. But the i-th row of
is equal to the i-th column of
. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then
E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.
In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set
and suppose that there are coefficients a_i such that
. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then
then
.
The answer is <span>5, 4, 2
</span>
Among all choices we have 5, so
x = 5
x - 5 = 0
Let's divide the expression by (x - 5) using the long division:
x³ - 11x² + 38x - 40
(x - 5) * x² = x³ - 5x² Subtract
____________________________
-6x² + 38x - 40
(x - 5) * (-6x) = -6x² + 30x Subtract
____________________________
8x - 40
(x - 5) * 8 = 8x - 40 Sutract
____________________________
0
Thus: x³ - 11x² + 38x - 40 = (x - 5)(x² - 6x + 8)
Now, let's simplify x² - 6x + 8.
x² - 6x + 8 = x² - 2x - 4x + 8 =
= x² - 2*x - (4*x - 4*2) =
= x(x - 2) - 4(x - 2) =
= (x - 4)(x - 2)
Hence:
x³ - 11x² + 38x - 40 = (x - 5)(x - 4)(x - 2)
To calculate zero:
x³ - 11x² + 38x - 40 = 0
(x - 5)(x - 4)(x - 2) = 0
x - 5 = 0 or x - 4 = 0 or x - 2 = 0
x = 5 or x = 4 or x = 2
(3)×(-2)=-6 that's the answer