Answer:
x+5
Step-by-step explanation:
Since you don't know how much Joe weighs, you can express his weight as x. Then, you add on 5 because you have 5 more lbs than joe (which is x).
Hey there!
If the price per orange is $.26 and we want to know how many oranges he bought and we have our total, we can set o equal to how many oranges he got and set up an algebraic equation:
0.26o = 2.08
We multiply .26 by o because o is how many oranges he bought and that's what we're solving for- so we multiply by the unit price.
To isolate o, we divide both sides by .26 to get:
The answer is C- Jim bought 8 oranges.
Hope this helps!
Well, you have to simplify the bottom part to be able to answer it as a whole number. Hope this helps.
the answer is 60,000
For Connexus students:
1. 6,0000
2. 2,300
3. 9.68 x 10 to the 5th power
4. 8.6 x 10 to the 3rd power
5. the number of places to move the decimal point to the right
Answer:
We have the equation
![c_1\left[\begin{array}{c}0\\0\\0\\1\end{array}\right] +c_2\left[\begin{array}{c}0\\0\\3\\1\end{array}\right] +c_3\left[\begin{array}{c}0\\4\\3\\1\end{array}\right] +c_4\left[\begin{array}{c}8\\4\\3\\1\end{array}\right] =\left[\begin{array}{c}0\\0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=c_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_4%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Then, the augmented matrix of the system is
![\left[\begin{array}{cccc}0&0&0&8\\0&0&4&4\\0&3&3&3\\1&1&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%260%260%268%5C%5C0%260%264%264%5C%5C0%263%263%263%5C%5C1%261%261%261%5Cend%7Barray%7D%5Cright%5D)
We exchange rows 1 and 4 and rows 2 and 3 and obtain the matrix:
![\left[\begin{array}{cccc}1&1&1&1\\0&3&3&3\\0&0&4&4\\0&0&0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%261%261%5C%5C0%263%263%263%5C%5C0%260%264%264%5C%5C0%260%260%268%5Cend%7Barray%7D%5Cright%5D)
This matrix is in echelon form. Then, now we apply backward substitution:
1.

2.

3.

4.

Then the system has unique solution that is
and this imply that the vectors
are linear independent.