The point (2, 5) is not on the curve; probably you meant to say (2, -5)?
Consider an arbitrary point Q on the curve to the right of P,
, where
. The slope of the secant line through P and Q is given by the difference quotient,

where we are allowed to simplify because
.
Then the equation of the secant line is

Taking the limit as
, we have

so the slope of the line tangent to the curve at P as slope 2.
- - -
We can verify this with differentiation. Taking the derivative, we get

and at
, we get a slope of
, as expected.
Answer:
Answer would be D
Step-by-step explanation:
Answer:
The answer is below
Step-by-step explanation:
1)
mean (μ) = 12, SD(σ) = 2.3, sample size (n) = 65
Given that the confidence level (c) = 90% = 0.9
α = 1 - c = 0.1
α/2 = 0.05
The z score of α/2 is the same as the z score of 0.45 (0.5 - 0.05) which is equal to 1.65
The margin of error (E) is given as:

The confidence interval = μ ± E = 12 ± 0.47 = (11.53, 12.47)
2)
mean (μ) = 23, SD(σ) = 12, sample size (n) = 45
Given that the confidence level (c) = 88% = 0.88
α = 1 - c = 0.12
α/2 = 0.06
The z score of α/2 is the same as the z score of 0.44 (0.5 - 0.06) which is equal to 1.56
The margin of error (E) is given as:

The confidence interval = μ ± E = 23 ± 2.8 = (22.2, 25.8)
Answer:
Sorry for the wait.
Step-by-step explanation:
5. the two bottom angles are the same btw

6. straight lines are 180

7. another 180

8. 90 degree angle
