∫ √(4x - x²) dx
= 2[(4x - x²)^(3/2)] / 3(4 - 2x)
Answer:
Changing value of "d" changes the vertical shift of the cosine graph.
Step-by-step explanation:
Question says to find about how does your cosine graph change when including the d-value.
General equation of cosine function can be given as:

In that formula, value of "d" gives vertical shift.
So changing value of "d" changes the vertical shift of the cosine graph.
Answer:
9) x=58
10) r=4
11) m=4
12) p=3
13) x=6
14) x=-3
15) s=400
Step-by-step explanation:
9) x+2/5=12
x5 x5
x+2=60
-2 -2
x=58
10) 7r + 14 - 3r =30
-14 -14
<u>7r-3r</u>=16
4r=16
÷4 ÷4
r=4
11)
m+2=6
-2 -2
m=4
÷
÷
m=4
12) <u>2</u>(5p+9)=48
10p+18=48
-18 -18
10p=30
÷10 ÷10
p=3
13) <u>5</u>(2x-8)=20
10x-40=20
+40 +40
10x=60
÷10 ÷10
x=6
14)<u>6</u>(3-2x)=54
18-12x=54
-18 -18
-12x=36
÷-12 ÷-12
x=-3
15)
-
=40
x5 x5
2s-
=200
x2 x2
<u>2s-1s</u>=400
1s=400
÷1 ÷1
s=400
Answer:
I like ya cut g
Step-by-step explanation:
hehehhehehhee
Slope formula: (y2 - y1/x2 - x1)
Substitute
(9 - 17/-1 - 3) = 2