Answer:
I believe the answer is neither
Step-by-step explanation:
Answer:
h(8q²-2q) = 56q² -10q
k(2q²+3q) = 16q² +31q
Step-by-step explanation:
1. Replace x in the function definition with the function's argument, then simplify.
h(x) = 7x +4q
h(8q² -2q) = 7(8q² -2q) +4q = 56q² -14q +4q = 56q² -10q
__
2. Same as the first problem.
k(x) = 8x +7q
k(2q² +3q) = 8(2q² +3q) +7q = 16q² +24q +7q = 16q² +31q
_____
Comment on the problem
In each case, the function definition says the function is not a function of q; it is only a function of x. It is h(x), not h(x, q). Thus the "q" in the function definition should be considered to be a literal not to be affected by any value x may have. It could be considered another way to write z, for example. In that case, the function would evaluate to ...
h(8q² -2q) = 56q² -14q +4z
and replacing q with some value (say, 2) would give 196+4z, a value that still has z as a separate entity.
In short, I believe the offered answers are misleading with respect to how you would treat function definitions in the real world.
Answer:
y = -32
Step-by-step explanation:
-6(y+15)=-3y+6
Distribute
-6y - 90 = -3y +6
Add 6y to each side
-6y -90+6y = -3y+6y +6
-90 = 3y+6
Subtract 6 from each side
-90 -6 = 3y +6-6
-96 = 3y
Divide by 3
-96/3 = 3y/3
-32 = y
Step-by-step explanation:
3y +4 =5y -10
2y = 14
y = 7
DEF = (3Y+4)× 2 OR (5Y-10) ×2 OR (5Y-10+ 3Y+4)
Def= (3 ×7+4)×2
=50 degree