1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
10

A plane flies from Houston to nyc in 4hours the distance it travelled was 1627miles what was the average speed of the plane

Mathematics
1 answer:
Tamiku [17]3 years ago
8 0
406.75 since the equation for speed is distance over time so you would do 1627 divided by 4
You might be interested in
Sam found 24 seashells. Steve also found some. They found 67 seashells altogether. How many seashell did Steve found.
stepan [7]
Steve found 43 seashells
5 0
3 years ago
3(2y + 3) = 1(y + 1)
777dan777 [17]

Answer:

 =  − 8/5

Step-by-step explanation:

Distribute

3

(

2

+

3

)

=

1

(

+

1

)

6

+

9

=

1

(

+

1

)

Multiply by 1

6

+

9

=

1

(

+

1

)

6

+

9

=

+

1

Subtract  

9

9

9

from both sides of the equation

6

+

9

=

+

1

6

+

9

−

9

=

+

1

−

9

5 0
3 years ago
Read 2 more answers
In variogram modeling with multiple variables and anisotropy, if all the variograms cannot be modeled well, it is critical to mo
siniylev [52]

Answer:

The statement is false.

Step-by-step explanation:

If the modeling is with multiple variables it is necessary for all the variables to be modeled well such that the criticality of the model is dependent on all the variograms. It is not dependent on the cross variograms only.

6 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Round 637.892 to whole number
Stels [109]

Answer:

638

Step-by-step explanation:

its 638, not 639 because its above 638.5

4 0
3 years ago
Read 2 more answers
Other questions:
  • A card is drawn from a deck of 52 cards. find the probability of drawing a king or a red card
    6·1 answer
  • True false a line parallel to one side of a triangle and intersects the other two sides divides the other two sides proportional
    10·2 answers
  • Hi please help me with this
    15·1 answer
  • What is 65% of 160.
    5·2 answers
  • Which graph shows the solution set for 2x+3 &gt;-g?
    11·1 answer
  • W^2 + 2 + 48 divided by 2z. If w = 5 and z = 8 *
    10·1 answer
  • Hungry Harry is a giant ogre with an appetite that fluctuates throughout the day. H(t) models the weight of sheep (in kg) that H
    5·1 answer
  • What do you get when you cross an electric eel and a sponge puzzle time riddle
    7·1 answer
  • The number of calories burned while jogging varies directly with the number of
    6·1 answer
  • Hi, I have another one of these questions, is this correct, please help, let me know?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!