The ph after 17.0 ml of 0.15 m Koh has been added to 15 ml of 0.20 m hclo4 is <u>3.347</u>.
Titration is a commonplace laboratory technique of quantitative chemical analysis to determine the attention of an identified analyte. A reagent, termed the titrant or titrator, is ready as a trendy answer of recognized awareness and extent.
<u>Calculation:-</u>
Normality of acid Normality of base
= nMV nMV
= 1 × 0. 15 × 0.017 1 × 0. 20 ×0.015 L
= 2.55 × 10⁻³ = 3 × 10⁻³
The overall base will be high
net concentration = 3× 10⁻³ - 2.55 × 10⁻³
= 0.45 × 10⁻³
= 4.5× 10⁻⁴
pH = -log[4.5 × 10⁻⁴]
= 4 - log4.4
= <u>3.347</u>
A titration is defined as 'the manner of determining the amount of a substance A by using adding measured increments of substance B, the titrant, with which it reacts till precise chemical equivalence is completed the equivalence factor.
Learn more about titration here:-brainly.com/question/186765
#SPJ4
I just had this question. The answer is A. a battery
Answer:
According to Kinetic Molecular theory, Temperature is directly proportional to the Average Kinetic energy of a molecules.
Explanation:
If the mass of the particles in a container is constant, then its moving molecules cause the gas gets warmer. On collision of molecules, Kinetic energy of molecules get high, so as a result, temperature gets high.
Fast moving of particles increases the temperature.
<span>The two types of energy that can be moved through conductors are electrical energy and thermal energy. Conductors are materials that allow electrons to flow freely or transfers heat more easily than other substances. Heat is transfered in conductors when fast moving particles (contains more heat) crash into slow moving particles. conductors allow electrons to flow freely from one object to another in contact. Metals are usually excelent conductors of heat and electricity. </span>
Answer:
The volume of 6.62×10⁻³moles of HF at STP is 148.38×10⁻³ L
Explanation:
Given data:
Number of moles of HF = 6.62×10⁻³ mol
Volume of HF in litter at STP = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Standard temperature = 273 K
Standard pressure = 1 atm
Now we will put the values in formula.
1 atm × V = 6.62×10⁻³mol ×0.0821 atm.L/ mol.K × 273 K
V = 6.62×10⁻³mol ×0.0821 atm.L/ mol.K × 273 K / 1 atm
V = 148.38×10⁻³ L
Thus, the volume of 6.62×10⁻³moles of HF at STP is 148.38×10⁻³ L.