Answer:
Distance of JK = 15 unit
Step-by-step explanation:
Given:
J(4,8)
K(-1,-2)
Find:
Distance of JK
Computation:
Distance = √(x₂-x₁)² + (y₂-y₁)²
Distance of JK = √(-1-4)² + (-2-8)²
Distance of JK = √25 + 100
Distance of JK = √125
Distance of JK = 15 unit
I think they should keep it around, even if it might not be the most efficient strategy. After all, what if you need to solve a problem using multiple strategies?
So i think in the school there may be 4800 in the school. Hope this helps
To get our answer, we just have to find the least common multiple (LCM) of 8 and 11. In this case, it's 88, because that's the smallest number that 8 and 11 are both factors of.
Hope this helped! :D