Answer:
The maximum number of pounds of potato salad that Charlie can buy is 0.375
Step-by-step explanation:
see the attached figure to better understand the problem
Let
a ----> the cost of one tuna sandwich
b ----> the cost of a bottle of apple juice
c ----> the cost per pound of potato salad
x ----> pounds of potato salad
we have
![a=\$4.25](https://tex.z-dn.net/?f=a%3D%5C%244.25)
![b=\$2.25](https://tex.z-dn.net/?f=b%3D%5C%242.25)
![c=\$4.00/lb](https://tex.z-dn.net/?f=c%3D%5C%244.00%2Flb)
we know that
He wants to buy a tuna sandwich, a bottle of apple juice, and x pounds of potato salad and can spend up to $8
The inequality that represent this situation is
![a+b+cx \leq 8](https://tex.z-dn.net/?f=a%2Bb%2Bcx%20%5Cleq%208)
substitute the given values
![4.25+2.25+4.00x \leq 8](https://tex.z-dn.net/?f=4.25%2B2.25%2B4.00x%20%5Cleq%208)
Solve for x
Combine like terms
![6.50+4.00x \leq 8](https://tex.z-dn.net/?f=6.50%2B4.00x%20%5Cleq%208)
Subtract 6.50 both sides
![4.00x \leq 8-6.50](https://tex.z-dn.net/?f=4.00x%20%5Cleq%208-6.50)
![4.00x \leq 1.50](https://tex.z-dn.net/?f=4.00x%20%5Cleq%201.50)
Divide by 4 both sides
![x \leq 1.50/4.00](https://tex.z-dn.net/?f=x%20%5Cleq%201.50%2F4.00)
![x \leq 0.375\ lbs](https://tex.z-dn.net/?f=x%20%5Cleq%200.375%5C%20lbs)
therefore
The maximum number of pounds of potato salad that Charlie can buy is 0.375
Answer:
The answer is symmetrical
Step-by-step explanation:
x
x x x
x x x x x
x x x x x x x
___________________________
1 2 3 4 5 6 7
Answer:
(D) Each year,the machinery loses a value of 4,500
When it is 3 years old,it is worth a little over 35K ,and when it is 6 years old,its worth about 22K.
This info means A,C and B is wrong b/c it loses too little value per year.
Answer:
x=3×3
Step-by-step explanation:
ok it's fine if you don't mind
Answer:
y(0) = 0.25 feet
![y(\frac{1}{4}) = 0.0789 \text{ feet}](https://tex.z-dn.net/?f=y%28%5Cfrac%7B1%7D%7B4%7D%29%20%3D%200.0789%20%5Ctext%7B%20feet%7D)
![y(\frac{1}{2}) =-0.2003 \text{ feet}](https://tex.z-dn.net/?f=y%28%5Cfrac%7B1%7D%7B2%7D%29%20%3D-0.2003%20%5Ctext%7B%20feet%7D)
Step-by-step explanation:
We are given the following information in the question:
The displacement from equilibrium of an oscillating weight suspended by a spring =
![y(t) = \displaystyle\frac{1}{4} \cos(5t)](https://tex.z-dn.net/?f=y%28t%29%20%3D%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%285t%29)
where y is the displacement in feet and t is the time in seconds.
Here, cos is in radians.
1) t = 0
![y(0) = \displaystyle\frac{1}{4} \cos(5(0)) = \frac{1}{4} \cos(0) = \frac{1}{4}(1) = \frac{1}{4}](https://tex.z-dn.net/?f=y%280%29%20%3D%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%285%280%29%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%280%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%281%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D)
y(0) = 0.25 feet
2) t = ![\frac{1}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D)
![y(\displaystyle\frac{1}{4}) = \displaystyle\frac{1}{4} \cos(5(\frac{1}{4})) = \frac{1}{4} \cos(1.25) = \frac{1}{4}(0.31532236) =0.07883059](https://tex.z-dn.net/?f=y%28%5Cdisplaystyle%5Cfrac%7B1%7D%7B4%7D%29%20%3D%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%285%28%5Cfrac%7B1%7D%7B4%7D%29%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%281.25%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%280.31532236%29%20%3D0.07883059)
![y(\frac{1}{4}) = 0.0789 \text{ feet}](https://tex.z-dn.net/?f=y%28%5Cfrac%7B1%7D%7B4%7D%29%20%3D%200.0789%20%5Ctext%7B%20feet%7D)
3) t = ![\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D)
![y(\displaystyle\frac{1}{2}) = \displaystyle\frac{1}{4} \cos(5(\frac{1}{2})) = \frac{1}{4} \cos(2.5) = \frac{1}{4}(-0.80114362) = -0.200285905](https://tex.z-dn.net/?f=y%28%5Cdisplaystyle%5Cfrac%7B1%7D%7B2%7D%29%20%3D%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%285%28%5Cfrac%7B1%7D%7B2%7D%29%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Ccos%282.5%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%28-0.80114362%29%20%3D%20-0.200285905)
![y(\frac{1}{2}) =-0.2003 \text{ feet}](https://tex.z-dn.net/?f=y%28%5Cfrac%7B1%7D%7B2%7D%29%20%3D-0.2003%20%5Ctext%7B%20feet%7D)
The negative sign indicates the opposite direction of displacement.