We are to solve the total area of the pyramid and this can be done through area addition. We first determine the area of the base using the Heron's formula.
A = √(s)(s - a)(s - b)(s - c)
where s is the semi-perimeter
s = (a + b + c) / 2
Substituting for the base,
s = (12 + 12 + 12)/ 2 = 18
A = (√(18)(18 - 12)(18 - 12)(18 - 12) = 62.35
Then, we note that the faces are just the same, so one of these will have an area of,
s = (10 + 10 + 12) / 2 = 16
A = √(16)(16 - 12)(16 - 10)(16 - 10) = 48
Multiplying this by 3 (because there are 3 faces with these dimensions, we get 144. Finally, adding the area of the base,
total area = 144 + 62.35 = 206.35
Answer
66597 g
divide by 1000
66.597 kg
The range of the equation is 
Explanation:
The given equation is 
We need to determine the range of the equation.
<u>Range:</u>
The range of the function is the set of all dependent y - values for which the function is well defined.
Let us simplify the equation.
Thus, we have;

This can be written as 
Now, we shall determine the range.
Let us interchange the variables x and y.
Thus, we have;

Solving for y, we get;

Applying the log rule, if f(x) = g(x) then
, then, we get;

Simplifying, we get;

Dividing both sides by
, we have;

Subtracting 7 from both sides of the equation, we have;

Dividing both sides by 2, we get;

Let us find the positive values for logs.
Thus, we have,;


The function domain is 
By combining the intervals, the range becomes 
Hence, the range of the equation is 
Answer:
c. 60 mins
Step-by-step explanation:
12 * 5 = 60
15 * 4 = 60