1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
14

Charlie’s pizza charges $12 for a medium cheese pizza plus $2 for each additional topping. The cost of a medium pizza, y, with x

toppings is represented by this equation:
y = 12 + 2x

Which graph represents this equation?

Mathematics
1 answer:
brilliants [131]3 years ago
4 0

Answer:

<u>The correct answer is Graph A. It's the only graph with the right values for (x, y) within the Cartesian plane. </u>

Step-by-step explanation:

1. Let's review the data given to us for solving the question:

Amount that Charlie’s pizza charges for a medium cheese pizza = US$ 12

Amount that Charlie’s pizza charges for each additional topping = US$ 2

Cost of a medium pizza (y) with (x) toppings is represented by the equation:

y = 12 + 2x

2. Let's find the values for the equation:

When no toppings are added:

y = 12 + 2 * 0 = 12 + 0 = 12

When 1 topping is added:

y = 12 + 2 * 1 = 12 + 2 = 14

When 2 toppings are added:

y = 12 + 2 * 2 = 12 + 4 = 16

When 3 toppings are added:

y = 12 + 2 * 3 = 12 + 6 = 18

When 4 toppings are added:

y = 12 + 2 * 4 = 12 + 8 = 20

As we can see, the graph starts with the point (0, 12) and continues with (1, 14), (2, 16), (3, 18), (4, 20).  

Graph B starts with the point (0, 4) and graph C with the point (0,6). They're incorrect. And graph D starts with (0, 12) but continues with (1, 13), (2, 14) (3, 15) and (4, 16), so this graph is also incorrect.

<u>The only graph with the right values for the Cartesian plane is Graph A.</u>

You might be interested in
I don't really know on this one. I'm thinking it's because if T kept going it would go into a 3rd quadrant but I'm not too sure.
enyata [817]
That is correct since the line in T is not straight it would eventually hit the third quadrant
<span />
8 0
3 years ago
A turtle swims 15 kilometers in 9 hours. How far does the turtle swim in 24 hours?
Pavlova-9 [17]

Answer:

about 40 kilometers

Step-by-step explanation:

6 0
2 years ago
8 less than the product of 6 and -16
Pachacha [2.7K]

Answer:

-104

Step-by-step explanation:

Step 1: Write out expression

6(-16) - 8

Step 2: Evaluate

-96 - 8

-104

3 0
3 years ago
Look at the picture to see the question.
Andru [333]

Answer:

y = 5/7x + 5

Step-by-step explanation:

If you replace the x and y in the equation with points x and y of point (35, 30) and change the 10 to b you can solve for b which is the what changes from the original equation to this one.

30 = 5/7(35) + b

30 = 25 + b

5 = b

Since the equations are parallel they have the same slope.

This is the equation for a parallel line that passes through point (35, 30):

y = 5/7x + 5

Hope this made sense! Please give Brainliest!

6 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • Solve -4x ≥ -8. Graph the solution.
    8·1 answer
  • What is the solution to (5m)² - (2n-3m)³ if m=-3 and n=5
    9·1 answer
  • A hacker is trying to guess someone's password. the hacker knows (somehow) that the password is 12 characters long, and that eac
    15·1 answer
  • (X2y3)1/2(x2y3)1/3=xa/3ya/2 where a is constant, is true for all positive values of c and y, what is value of a?
    13·1 answer
  • 480 divided by 8 long division
    6·2 answers
  • Simplify the expression x2tx-x-5-xt7
    14·1 answer
  • 7(2x+3)=3(4x+6)+2x+3<br>​
    7·1 answer
  • Based on your observations, what conclusion can you draw about the lengths of AB DB AE EC
    9·1 answer
  • Solve the literal equation for x. <br><br> k= nx - 3x
    9·2 answers
  • Pls answer for brainlest and 50 points PLEASE EXPLAIN <br><br> In image
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!