Answers:
When we evaluate a logarithm, we are finding the exponent, or <u> power </u> x, that the <u> base </u> b, needs to be raised so that it equals the <u> argument </u> m. The power is also known as the exponent.

The value of b must be <u> positive </u> and not equal to <u> 1 </u>
The value of m must be <u> positive </u>
If 0 < m < 1, then x < 0
A <u> logarithmic </u> <u> equation </u> is an equation with a variable that includes one or more logarithms.
===============================================
Explanation:
Logarithms, or log for short, basically undo what exponents do.
When going from
to
, we have isolated the exponent.
More generally, we have
turn into 
When using the change of base formula, notice how

If b = 1, then log(b) = log(1) = 0, meaning we have a division by zero error. So this is why 
We need b > 0 as well because the domain of y = log(x) is the set of positive real numbers. So this is why m > 0 also.
Answer:
M
Step-by-step explanation:
M is in the middle of the alphabet, so it would be the midpoint of A-Z if they were placed on a coordinate plane.
2x + y = 350
x + 2y = 475
3x + 3y = 825
x + y = 275
x = 275 - y
(plug back into first equation)
2(275 - y) + y = 350
550 - 2y + y = 350
550 - y = 350
-y =-200 or y = $200 (dog)
therefore, x = $75 (cats)
Check
2(75) + 200 = 350
75 + 400 = 475
HAPPINESS! :)
The correct answer is A. 1