Answer:
2,-2
In mathematical analysis, the maxima and minima of a function, known collectively as extrema, are the largest and smallest value of the function, either within a given range, or on the entire domain.
Answer:
c = -75/14 OR c = -5.357143
Step-by-step explanation:
Simplify both equations:
1.2x + 7 - 5x =
-3.8x + 7
2.2c - 3 = 2(6 - c) + 7c =
c = −5.357143
OR
c = -75/14
The question wasn't quite clear, if this wasn't correct, please elaborate on what needed to be solved, and I'll fix my answer.
Hope this helped!
9514 1404 393
Answer:
1) f⁻¹(x) = 6 ± 2√(x -1)
3) y = (x +4)² -2
5) y = (x -4)³ -4
Step-by-step explanation:
In general, swap x and y, then solve for y. Quadratics, as in the first problem, do not have an inverse function: the inverse relation is double-valued, unless the domain is restricted. Here, we're just going to consider these to be "solve for ..." problems, without too much concern for domain or range.
__
1) x = f(y)
x = (1/4)(y -6)² +1
4(x -1) = (y-6)² . . . . . . subtract 1, multiply by 4
±2√(x -1) = y -6 . . . . square root
y = 6 ± 2√(x -1) . . . . inverse relation
f⁻¹(x) = 6 ± 2√(x -1) . . . . in functional form
__
3) x = √(y +2) -4
x +4 = √(y +2) . . . . add 4
(x +4)² = y +2 . . . . square both sides
y = (x +4)² -2 . . . . . subtract 2
__
5) x = ∛(y +4) +4
x -4 = ∛(y +4) . . . . . subtract 4
(x -4)³ = y +4 . . . . . cube both sides
y = (x -4)³ -4 . . . . . . subtract 4