An alternating series

converges if

is monotonic and

as

. Here

.
Let

. Then

, which is positive for all

, so

is monotonically increasing for

. This would mean

must be a monotonically decreasing sequence over the same interval, and so must

.
Because

is monotonically increasing, but will still always be positive, it follows that

as

.
So,

converges.
Answer:
Cans for food drive
Step-by-step explanation:

Differentiate both sides with respect to <em>x</em>, assuming <em>y</em> = <em>y</em>(<em>x</em>).




Solve for d<em>y</em>/d<em>x</em> :



If <em>y</em> ≠ 0, we can write

At the point (1, 1), the derivative is

Given:
The table of values is
Number of Students : 7 14 21 28
Number of Textbooks : 35 70 105 140
To find:
The rate of change and showing that the ratios of the two quantities are proportional and equivalent to the unit rate.
Solution:
The ratio of number of textbooks to number of students are




All the ratios of the two quantities are proportional and equivalent to the unit rate.
Let y be the number of textbooks and x be the number of students, then

Here, k=5.


Hence the rate of change is constant that is 5.
I think it's called a coordinate plane
Sorry if I'm wrong