There are various reasons why a measurement tool cannot be accurate. One of them is thermal contraction and expansion varies according to seasons.
<h3>What are Accuracy and Precision?</h3>
There are two ways to assess observational error: accuracy and precision. Precision measures how closely two measurements are to one another, whereas accuracy measures how close a group of measurements is to its actual value. In other words, precision is a measure of statistical variability and a description of random errors.
We can say that a tool can be precise, but it cannot be accurate. There are various reasons behind that, some of them are :
- It may not be calibrated properly. If there are no reliable standards to use for calibration, this may occur.
- Perhaps it strayed. This is why electronic scales include a tare function—they are terrible in this area.
- Perhaps the measurements are not linear. Our calipers might have been quite precise at the 2-inch standard, where they were calibrated, but inaccurate at other dimensions.
- Temperature is one environmental component that the instrument might be sensitive to. These effects might be compensated for, but the compensation might not be ideal. This issue affects both dissolved solids meters and picometers.
These are some of the reasons due to which measurement tool cannot be accurate.
To get more information about Accuracy and Precision :
brainly.com/question/15276983
#SPJ1
Answer:
why should we do , do by your own , no sense
Explanation:
Answer is C: Ability to see three-dimensional images of the surfaces of object
Explanation:
To enable the technician see fractures and broken particles in a better resolution as the SEM sees the peaks and valley of the structure.
Explanation:
Effective nuclear charge is defined as he net positive charge experienced by an electron in an atom. It is termed "effective" because the shielding effect of electrons prevents higher orbital electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner-layer electrons.
The 1s is the closest shell to the nucleus of an therefore maximum nuclear charge is experienced. The formula for effective nuclear charge is:
Zeff = Z – S
where
Z = the number of protons in the nucleus, and
S = the shielding constant, the average number of electrons between the nucleus and the electron.
Hence, the energy required to remove an electron from the 1s orbital is the strongest.
1000 miles = 1 609 340 m
2 weeks = 1209 600 s
v = 1609340/1209600 = 1.33 m/s