Answer:
Force constant will be 1195.85 N/m
Work done will be 1.6859 J
Explanation:
We have given the force, F = 63.5 N
Spring is stretched by 5.31 cm
So x = 0.0531 m
Force is given , F = 63.5 N
We know that force is given by 
So 
k = 1195.85 N/m
Now we have to find the work done
We know that work done is given by

Answer:
(a) 89 m/s
(b) 11000 N
Explanation:
Note that answers are given to 2 significant figures which is what we have in the values in the question.
(a) Speed is given by the ratio of distance to time. In the question, the time given was the time it took the pulse to travel the length of the cable twice. Thus, the distance travelled is twice the length of the cable.

(b) The tension,
, is given by

where
is the speed,
is the tension and
is the mass per unit length.
Hence,

To determine
, we need to know the mass of the cable. We use the density formula:

where
is the mass and
is the volume.

If the length is denoted by
, then


The density of steel = 8050 kg/m3
The cable is approximately a cylinder with diameter 1.5 cm and length or height of 620 m. Its volume is




Answer:
this the way that hydraulic pump works:
The system of hydraulic jack lifts the heavy objects by transferring the oil from one chamber to another.
Through the suction valves into the two cylinders which creates pressure distributing the fluid equally to the points causing the objects to lift up.
hope these points helped u
any confusion then comment it
Answer:
When a dying star has a mass which is 1.4 to 3 times that of the sun, it will form a neutron star. Stars with a mass greater than thrice the sun's mass, black hole is formed.
Explanation:
Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens