Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
I believe that the answer to the question provided above is that <span>this represent about the type of change happening in the container it has a chemical change.</span>
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
Work done = (1/2)[(Gmm_e)/(R_e)]
Explanation:
I've attached the explanations below.
The density of the object is approximately 1.91 kg per m³.
42 kg is a measure of mass, and 22 m³ is a measure of volume. Knowing this, you can use the relationship

to solve for the object's density.
42 kg

22 m³

1.91 kg per m³.
Answer:
2.9 m
Explanation:
First find the time it takes to reach the floor.
y = y₀ + v₀ t + ½ at²
(0 m) = (1.6 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 0.571 s
Next, find the distance it travels in that time.
x = x₀ + v₀ t + ½ at²
x = (0 m) + (5.0 m/s) (0.571 s) + ½ (0 m/s²) (0.571 s)²
x = 2.86 m
Rounded to two significant figures, the marble travels 2.9 meters in the x direction.