<span>the speed of something in a given direction. so i think none of these</span>
Thermal conductions
K= QL/ART
Aluminium T₁ = 10 + 273.15
T₂ = 283.15k
205 = 2.0 × 0.30/4× 10⁻⁴ × (T₂ - 283.15)
Copper
385 = Q × 0.70/4×10⁻⁴ ×(433.15 - T₂)
Where T₃ = 160 + 273.15
T₃ = 433.15K
From 2 to 3
205/385 = 0.30/0.70 × 433.15 - T₂/T₂ - 283.15
= 0.53T₂ -150.06 = 181.92 - 0.42 T₂
→ 0.95T₂ = 331.98 ⇒ T₂ = ₂349.45k
T₂ = 76.3°c
=77°c.
PART a)
Before Drew throw Lily in forwards direction they both stays at rest
So initial speed of both of them is zero
So here we can say that initial momentum of both of them is zero
So total momentum of the system initially = ZERO
PART b)
Since there is no external force on the system of two
so there will be no change in the momentum of this system and it will remain same as initial momentum
So final momentum of both of them will be ZERO
PART c)
As we know that momentum of both will be zero always
so we have


in opposite direction
Molecular mass may be calculated by taking the atomic mass of each element present and multiplying it by the number of atoms of that element in the molecular formula. Then, the number of atoms of each element is added together. This value may be reported as a decimal number or as 16.043 Da or 16.043 amu.
Answer:
particle's potential energy = 70J
Explanation:
From conservation of energy; K1 + Ue1 = K2 + Ue2
where K1 and K2 are the kinetic energies at two positions and Ue1 and Uue2 are the electrical potential energies at two positions.
k1 = 10J, Ue1 = 100J
K2 = 40J
substitute into K1 + Ue1 = K2 + Ue2
Ue2 = K1 + Ue1 - K2
= 10 +100 - 40
Ue2 = 70J