Answer:
μ = 0.109
Explanation:
Draw a free body diagram of the crate. There are four forces:
Weight force mg pulling down.
Normal force N pushing up.
Applied force P pulling at θ above the horizontal.
Friction force Nμ pushing to the left.
Sum of the forces in the y direction:
∑F = ma
N + P sin θ − mg = 0
N = mg − P sin θ
Sum of the forces in the x direction:
∑F = ma
P cos θ − Nμ = ma
P cos θ − ma = Nμ
μ = (P cos θ − ma) / N
μ = (P cos θ − ma) / (mg − P sin θ)
Given:
P = 585 N
θ = 28.0°
m = 125 kg
a = 3.30 m/s²
μ = (585 cos 28.0° − 125 kg × 3.30 m/s²) / (125 kg × 9.8 m/s² − 585 sin 28.0°)
μ = 0.109
To develop this problem we will apply the concepts related to the kinematic equations of motion, specifically that of acceleration. Acceleration can be defined as the change of speed in an instant of time, mathematically this is

If a mobile is decreasing its speed (it is slowing down), then its acceleration is in the opposite direction to the movement. This would imply that the acceleration vector is opposite to the velocity vector.
Therefore the correct answer is B.
Answer:
meters
Explanation:
I'm not positive if this is correct, your teacher may be looking for a broader answer so possibly just 'distance'. Hope this helps! <3
Well I don't know. Let's actually LOOK at the picture and see if that helps.
A, B, C, and D all have the same TOTAL length, but A has the most waves crammed into that same total length.
By golly, that means the length of <u><em>each</em></u> wave in A must be shorter than each wave in B, C, or D.
The correct choice is <em> A </em>. Looking at the picture did the trick !
Answer:
2653 turns
Explanation:
We are given that
Diameter,d=2 cm
Length of magnet,l=8 cm=
1m=100 cm
Magnetic field,B=0.1 T
Current,I=2.4 A
We are given that
Magnetic field of solenoid and magnetic are same and size of both solenoid and magnetic are also same.
Length of solenoid=
Magnetic field of solenoid

Using the formula

Where 
