The refineries that use the oil to put in their cars as gasoline and then after a while the oil will disappear and go away and that's what a nonrenewable resource would be
Answer:
1995 and 2000 , 4 trillions
Explanation:
When a woman walks south at a speed of 2.0mph for 60 minutes. She then turns around and walks north at a distance of 3000m in 25 minutes. then the woman's average speed during her entire motion would be 73.15 meters /minute.
<h3>What is speed?</h3>
The total distance covered by any object per unit of time is known as speed.
the mathematical expression for speed is given by
speed = total; distance /total time
As given in the problem a woman walks south at a speed of 2.0mph for 60 minutes
60 min = 1 hour
1 mile = 1.60934 km
The distance covered by her southwards = speed ×time
=2 mph × 60 minutes
= 3.218 km
She then turns around and walks north at a distance of 3000m in 25 minutes
The distance covered northward is 3000m
speed = total distance /total time
=(3218 +3000) /(60+25)
=73.15 meters /minutes
Thus, The average speed of the woman would be 73.15 meters /minute.
Learn more about speed from here
brainly.com/question/13263542
#SPJ1
Answer:
(a) Negative Q
(b) Positive Q
Explanation:
Charge is the inherent property of matter due to the transference of electrons.
There are three methods of charging a body.
(i) Charging by friction: When two uncharged bodies rubbed together, then one body gets positive charged and the other is negatively charges it is due to the transference of electrons form one body to another.
(ii) Conduction: when a charged body comes in contact with the another uncharged body, the uncharged body gets the same charge and the charge is distributed equally.
(iii) Induction: When a uncharged body keep near the charged body, the uncharged body gets the same amount of charge but opposite in sign.
(a) When a small tack of charge Q is lowered into the hole, then due to the process of induction, the charge on the inner surface of the shell is - Q.
(b) Due to the process of conduction, the charge on the outer surface of the shell is Q.