Answer:
A. 59.4
Explanation:
The refractive index of the glass, n₁ = 1.50
The angle of incidence of the light, θ₁ = 35°
The refractive index of air, n₂ = 1.0
Snell's law states that n₁·sin(θ₁) = n₂·sin(θ₂)
Where;
θ₂ = The angle of refraction of the light, which is the angle the light will have when it passes from the glass into the air
Therefore;
θ₂ = arcsin(n₁·sin(θ₁)/n₂)
Plugging in the values of n₁, n₂ and θ₁ gives;
θ₂ = arcsin(1.50 × sin(35°)/1.0) ≈ 59.357551° ≈ 59.4°
The angle the light will have when it passes from the glass into the air, θ₂ ≈ 59.4°.
Answer: this answer is D. That's what I think it is
Explanation:
Answer:
lol do you still need help?
Explanation:
Answer:

What is the humidity if the dry-bulb is 10℃ and the wet-bulb is 6℃?
<h2><u>33% According to the Graph</u></h2>
Hope this helps!
Answer:
d) 289.31 m
Explanation:
Energy provided by potential energy = mgh = m x 9.8x 200 sin10.5 = 357.18m
Energy used by friction = μmgcos 10.5 x 200 = .075 x m x 9.8 x cos 10.5 x200 = 144.54 m .
Energy used by friction on plain surface = μmg x d.( dis distance covered on plain ) =.075x m x 9.8 xd = .735 m d
To equate
357.18 m -144.54 m = .735 m d
d = 289.31 m .