Answer:
option A is correct as 1 yard consist of 0.9144 meter which is less than one meter
Explanation:
from the above given statement option 1 is true
1 yard is equal to 0.9144 meter
while
1 mile is equal to 1.60934 km
1 foot is equal to 30.48 centimeter
1 inch is equal to 2.54 centimeter
therefore all these units [left one] are larger than their respective conversion [ right one unit]
therefore option A is correct as 1 yard consist of 0.9144 meter which is less than one meter
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s

- c. The weight of an object on the moon will be the same as its weight on Earth. It is false because the weight of an on the moon will be 1/6 th times its weight on Earth.
- d. The weight of an object is its mass multiplied by the force of gravity. The statement is false because the formula of weight is mass × acceleration due to gravity, not force of gravity.
- e. The mass and weight of an object are the same thing. The statement is false because mass means a body of matter. While weight of an object is its mass multiplied by the force of gravity.
- f. The mass of an object is the force of gravity acting upon an object. It is false because it will be the weight of the object not mass.
- So, the answers are c, d, e and f.
Hope you could understand.
If you have any query, feel free to ask.
Answer:
0.218
Explanation:
Given that
Total vibrations completed by the wave is 43 vibrations
Time taken to complete the vibrations is 33 seconds
Length of the wave is 424 cm = 4.24 m
to solve this problem, we first find the frequency.
Frequency, F = 43 / 33 hz
Frequency, F = 1.3 hz
Also, we find the wave velocity. Which is gotten using the relation,
Wave velocity = 4.24 / 15
Wave velocity = 0.283 m/s
Now, to get our answer, we use the formula.
Frequency * Wavelength = Wave Velocity
Wavelength = Wave Velocity / Frequency
Wavelength = 0.283 / 1.3
Wavelength = 0.218
For the first question, you got them right, for the two you left blank, initial(beginning) velocity: 2 m/s the final velocity is: 12 m/s