It condenses into liquid water.
Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.
<span>We know that the momentum keeps constant in a inelastic collisions, so the product of mass and speed do not change:
m1 * v1 + m2 * v2 = m * v
1 * 1 + 5 * 0 = (1 + 5) * v
1 = 6 * v
v = 1/6 m/s
So the final speed of the 6 kg chunk will travel at 0.167 m/s</span>
D) Partial charge cannot be removed, because charge is a discrete quantity that may exist only at certain values
Explanation:
The electric charge of an object is a property of the object that is related to the ability of the object to experience/exert an electric force: if the object is electrically charge, then it is attracted or repelled by other electrically charged object.
The electric charge of an object depends on the amount of charged particles it has on it. In particular, the fundamental particles that carry electric charge are:
- Protons: they carry electric charge of +e
- Electrons: they carry electric charge of -e
Where "e" is the fundamental charge (
). Therefore, one proton carry a charge of +e and one electron carry a charge of -e.
An electron is a fundamental particle: this means that it cannot be divided into smaller particles. This also means that it is not possible to remove part of the charge of the electron: in fact, it is said that electric charge exists only as discrete values, being a multiple of
. Therefore, the correct statement is
D) Partial charge cannot be removed, because charge is a discrete quantity that may exist only at certain values
Learn more about particles:
brainly.com/question/2757829
#LearnwithBrainly
Answer:
The speed of the block is 8.2 m/s
Explanation:
Given;
mass of block, m = 2.1 kg
height above the top of the spring, h = 5.5 m
First, we determine the spring constant based on the principle of conservation of potential energy
¹/₂Kx² = mg(h +x)
¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)
0.03125K = 118.335
K = 118.335 / 0.03125
K = 3786.72 N/m
Total energy stored in the block at rest is only potential energy given as:
E = U = mgh
U = 2.1 x 9.8 x 5.5 = 113.19 J
Work done in compressing the spring to 15.0 cm:
W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J
This is equal to elastic potential energy stored in the spring,
Then, kinetic energy of the spring is given as:
K.E = E - W
K.E = 113.19 J - 42.6 J
K.E = 70.59 J
To determine the speed of the block due to this energy:
KE = ¹/₂mv²
70.59 = ¹/₂ x 2.1 x v²
70.59 = 1.05v²
v² = 70.59 / 1.05
v² = 67.229
v = √67.229
v = 8.2 m/s