<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>
<span> </span>
Answer:
Earth's interior (Core)
Explanation:
The earth is comprised of 3 distinct layers namely the Core, the Mantle and the Crust, which are divided based on their composition as well as density.
The core of the earth is extremely very hot where the inner core remains solid and outer core acts a liquid. It is mainly comprised of iron, nickel and other siderophile elements.
A large amount of heat (energy) is radiated from this core region towards the surface of the earth. Due to this, the mantle rocks forms magma that creates the convection currents, where the hot and less dense magma rises upward and the cool and denser magma sinks to the bottom. This occurs continuously, as a result of which the lithospheric plates are forced to move over the less dense layer of asthenosphere.
Thus, the heat energy that drives the convection current in the mantle is provided from the interior (core) of the earth.
Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
Earth sits motionless in the universe at the center of a revolving globe of starts , with the moon and planets in orbit around the earth, is the surrounding model of the uninverse
Answer:
Given the area A of a flat surface and the magnetic flux through the surface
it is possible to calculate the magnitude
.
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux
is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (
). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with
being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

We are told the values of
and B, then we can calculate the magnitude
