Answer:
Volume of a cup
The shape of the cup is a cylinder. The volume of a cylinder is:
\text{Volume of a cylinder}=\pi \times (radius)^2\times heightVolume of a cylinder=π×(radius)
2
×height
The diameter fo the cup is half the diameter: 2in/2 = 1in.
Substitute radius = 1 in, and height = 4 in in the formula for the volume of a cylinder:
\text{Volume of the cup}=\pi \times (1in)^2\times 4in\approx 12.57in^3Volume of the cup=π×(1in)
2
×4in≈12.57in
3
2. Volume of the sink:
The volume of the sink is 1072in³ (note the units is in³ and not in).
3. Divide the volume of the sink by the volume of the cup.
This gives the number of cups that contain a volume equal to the volume of the sink:
\dfrac{1072in^3}{12.57in^3}=85.3cups\approx 85cups
12.57in
3
Step-by-step explanation:
Answer:
2 sets of possible solutions:
x=3, y = 5
and
x=-1, y = -3
Step-by-step explanation:
Using the graphical method, (see attached)
you can graph both equations and find their intersection points.
From the attached plot, you can see that the graphs intersect at (3,5) and (-1,-3)
Alternatively, you can solve this numerically by solving the following system of equations. You will get the same answer.
y = 2x + 1 ------------------- eq. (1)
y = x² - 4 ------------------- eq. (2)
Because a ║b you can say:
-60 -2x = -70 -4x ⇒ -2x + 4x = -70 + 60 ⇒ 2x = -10 ⇒ x = -5 :)))
i hope this is helpful
have a nice day
27^10-9^14
=3^30 - 3^28
=3^28 (3^2-1)
=3^28 ·8
=2^27 ·3·8
=3^27 · 24 is divisible by 24