Answer:
m(∠C) = 18°
Step-by-step explanation:
From the picture attached,
m(arc BD) = 20°
m(arc DE) = 104°
Measure of the angle between secant and the tangent drawn from a point outside the circle is half the difference of the measures of intercepted arcs.
m(∠C) = ![\frac{1}{2}[\text{arc(EA)}-\text{arc(BD)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%5Ctext%7Barc%28EA%29%7D-%5Ctext%7Barc%28BD%29%7D%5D)
Since, AB is a diameter,
m(arc BD) + m(arc DE) + m(arc EA) = 180°
20° + 104° + m(arc EA) = 180°
124° + m(arc EA) = 180°
m(arc EA) = 56°
Therefore, m(∠C) = 
m(∠C) = 18°
I think a rectangular prism.
Hope this helped.
Assuming that the cost per minute is the same for both months and the plan fee is the same, you can use y=mx+b for this
y is the cost of the phone plan, x is the cost per minute and b is the start cost.
so 19.41=25x+b for the first month
and 45.65=380x+b for the second month
solve both for b you get:
19.41-25x=b and 45.65-380x=b. from this we get
19.41-25x=45.65-380x
solve for x
328x=26.24 and x=0.08
this means the cost per minute is 0.08c/min (answer A)
rewrite the equation to calculate b, and where this time, the x is the number of minutes talked.
y=0.08x+b and plug in one of the two months
45.65=0.08 * 380 + b
Solve for b and b is 15.25
so the final equation is
y=0.08x+15.25 (answer B)
Answer:
Below.
Step-by-step explanation:
One example is a square.
Another is a rectangle.
Both of these contain 4 right angles.