<u>The answer is not contained detail explanation, just a solution and the required values. </u>
All the details are in the pictures, the answers are marked with orange colour.
Note,
in the task no 20.:

V - the velocity of the pair of the balls after collision.
in the task no 21:
m₁ - the mass of the copper ball; m₂ - the mass of the copper calorimeter; m₃ - the mass of the water; t₀ - the initial temperature of water in the copper calorimeter; θ - the final temperature in the calorimeter after the copper ball is transferred into a copper calorimeter; t₁ - the required initial temperature of the copper ball before it is transferred into the calorimeter.
Answer:
The charge in each ball will be 3 * 10^-12 C
Explanation:
(Assuming the correct charge of the second ball is 8 * 10^-12)
When the balls are brought in contact, all the charges are split evenly among then.
So first we need to find the total charge combined:
(-3 * 10^-12) + (8 * 10^-12) + (4 * 10^-12) = 9 * 10^-12 C
Then, when the balls are separated, each ball will have one third of the total charge, so in the end they will have the same charge:
(9 * 10^-12) / 3 = 3 * 10^-12 C
So the charge in each ball will be 3 * 10^-12 C
Answer:
3°C
Explanation:
We can that heat Q=m
dT
Where m is the mass
= specific heat capacity
dT = Temperature difference
here we have given m=625 g =.625 kg
specific heat of granite =0.79 J/(g-K) = 0.79 KJ/(kg-k)
=25°C
we have to find
we have also given Q=10.9 KJ
10.9=0.625×0.79×(25-
)
25-
=22
=3°C
The correct answer is D: Watt. This unit was named after James Watt, and
is used to express the equivalent of one joule per second in energy. In
experiments and on the packaging for electrical products such as light-bulbs, the measurement will usually be written in its abbreviated
format: W.
<span />
Answer:
I= 3.5 amps
Explanation:
Step one:
given data
rating of resistor R= 8 ohms
power P= 100W
Required
The current I
Step two
Yet this power is also given by

make I subject of the formula we have

substitute
