Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final height
is the bomb's initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's final velocity
Knowing this, let's begin with the answers:
<h3>b) Time
</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity
</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign only indicates the direction is downwards
<h3>c) Range
</h3>
Substituting (7) in (2):
(11)
(12)
The thermal energy will be transferred from the air to the surface. Hence, the answer is false.
Thermal energy can be transferred from higher temperatures to lower temperatures. It is obey the second law of thermodynamics
"At a very microscopic level, it simply says that if you have a system that is isolated, any natural process in that system progresses in the direction of increasing disorder, or entropy, of the system."
It means that heat energy transferred from the higher temperature and the lower temperature states will absorb heat energy from the surrounding. The thermal energy will be transferred through conduction, convection, or radiation.
Find more on thermal energy at: brainly.com/question/7541718
#SPJ4
Answer:
Explanation:
Given
mass of lead piece 
mass of water in calorimeter 
Initial temperature of water 
Initial temperature of lead piece 
we know heat capacity of lead and water are
and
respectively
Let us take
be the final temperature of the system
Conserving energy
heat lost by lead=heat gained by water





Answer:The change in entropy of the total amount of water is negative as a result of the mixing.
Explanation:If you increase temperature, you increase entropy
Also More energy gives you greater entropy and randomness of the atoms.
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm