Answer:
a)
, b)
, c) 
Explanation:
a) The net flux through the cube is:


b) The flux through the right face is:


c) The flux through the left face is:


Answer:
R=0.5B+0.5C+2A+D
Explanation:
By the triangular law of vector addition
vector R= vector B- vector D
As A,B,C,D are edges of the parallelogram,
A is parallel to D but opposite in direction.
Therefore
;
;

B is parallel to C and in same direction.



Answer:
Yes, since the choice of the zero o potential energy is arbitrary.
Explanation:
The kinetic energy is due to the motion of the object. The expression for the kinetic energy is as follows;

Here, m is the mass of the object and v is the velocity of the object.
The kinetic energy can not be negative as the velocity is squared. It can be zero and positive.
Potential energy: It is the energy is due to the position of the object.
The expression for the potential energy is as follows;
PE= mgh
Here, g is the acceleration due to gravity and height.
Height can be taken from the reference point, zero which can be taken below zero and above zero. Zero is taken as origin. Below zero, the height is taken as negative and above zero, the height is taken as positive.
The potential energy can be zero, positive and negative.
The total energy is the sum of kinetic energy and potential energy.
E= KE + PE
Here, KE is the kinetic energy and PE is the potential energy.
Therefore, the option (B) is correct.
<span>First law of thermodynamics. This conservation law states that energy cannot be created or destroyed but can be changed from one form to another. In essence, energy is always conserved but can be converted from one form into another. Like when an engine burns fuel, it converts the energy stored in the fuel's chemical bonds into useful mechanical energy and then into heat, or more specifically, the melting ice cubes. Yeast breaks down maltose into glucose to produce alcohol and Co2 in the fermentation process. This is a prime example of the 1st law of thermodynamics. No form of usable energy is really lost; it only changes from one form to another</span>