(a) The speeds of the tips of both rotors; main rotor <u>178.3 m/s</u> and tail rotor <u>218.4 m/s</u>.
(b) The speed of the main rotor is <u>0.52</u> speed of sound, and the speed of the tail rotor is <u>0.64</u> speed of sound.
<h3>Linear speed of main motor and tail rotor</h3>
v = ωr
where;
- ω is the angular speed (rad/s)
- r is radius (m)
v(main rotor) = (444 rev/min x 2π rad x 1 min/60s) x (0.5 x 7.67 m)
v(main rotor) = 178.3 m/s
v(tail rotor) = (4,130 rev/min x 2π rad x 1 min/60s) x (0.5 x 1.01 m)
v(tail rotor) = 218.4 m/s
<h3>Speed of the rotors with respect to speed of sound</h3>
% speed (main motor) = 178.3/343 = 0.52 = 52 %
% speed (tail motor) = 218.4/343 = 0.64 = 64 %
Thus, the speed of the main rotor is 0.52 speed of sound, and the speed of the tail rotor is 0.64 speed of sound.
Learn more about linear speed here: brainly.com/question/15154527
#SPJ1
Answer:
a)The approximate radius of the nucleus of this atom is 4.656 fermi.
b) The electrostatic force of repulsion between two protons on opposite sides of the diameter of the nucleus is 2.6527
Explanation:

= Constant for all nuclei
r = Radius of the nucleus
A = Number of nucleons
a) Given atomic number of an element = 25
Atomic mass or nucleon number = 52


The approximate radius of the nucleus of this atom is 4.656 fermi.
b) 
k=
= Coulombs constant
= charges kept at distance 'a' from each other
F = electrostatic force between charges


Force of repulsion between two protons on opposite sides of the diameter



The electrostatic force of repulsion between two protons on opposite sides of the diameter of the nucleus is 2.6527
Pretty sure it is B.
Because inertia is a tendency to do nothing or remain unchanged.
Answer:
-75.35°
Explanation:
Let C be the sum of the two vectors A and B. Hence, we can write the following

but since the vector C is in the -y direction,
= 0 and
= —12 m.
Thus
![B_{x} =-A_{x} =-[-Acos(180-127)]=(8)*cos(53)\\B_{x} =4.81m](https://tex.z-dn.net/?f=B_%7Bx%7D%20%3D-A_%7Bx%7D%20%3D-%5B-Acos%28180-127%29%5D%3D%288%29%2Acos%2853%29%5C%5CB_%7Bx%7D%20%3D4.81m)
similarly, we can determine
by rearranging equation (1)

so the magnitude of B is

Finally, the direction of B can be calculated as follows
Ф=
hence the vector B makes an angle of 75.35 clockwise with + x axis
Answer:
Part a)
When there is no friction then acceleration is

Part b)
if there is friction force along the inclined then acceleration is

Explanation:
Part a)
As we know that the skier is on inclined plane
So here if there is no friction then net force along the inclined plane is given as

now acceleration of the skier is given as




Part b)
if there is friction force along the inclined then net force along the inclined plane is given as

now acceleration of the skier is given as



