Answer:
The answer to your question is 0.4 moles of Oxygen
Explanation:
Data
Octane (C₈H₈)
Oxygen (O₂)
Carbon dioxide (CO₂)
Water (H₂O)
moles of water = ?
moles of Oxygen = 1
Balanced chemical reaction
C₈H₈ +10O₂ ⇒ 8CO₂ + 4H₂O
Reactant Element Products
8 C 8
8 H 8
20 O 20
Use proportions to solve this problem
10 moles of Oxygen ----------------- 4 moles of water
1 mol of Oxygen ------------------ x
x = (4 x 1) / 10
x = 4 / 10
x = 0.4 moles of water
Answer: Volume would be 196.15 mL if the temperature were changed to
and the pressure to 1.25 atmospheres.
Explanation:
Given:
,
= 256 mL,
= 720 torr (1 torr = 0.00131579 atm) = 0.947368 atm
,
Formula used to calculate volume is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that the volume would be 196.15 mL if the temperature were changed to
and the pressure to 1.25 atmospheres.
Different elements produce different colors of light when heated because the electrons in these elements have different permissible energy levels. When an element is heated, the electrons inside it become excited and move to an higher energy level from the ground state. When the electrons drop from this higher energy level, they typically emit energy quantum, the color of the light that is observed at this stage depends on difference that exist in the two energy levels.<span />
1.3 kJ/kg K x 5 kg x 200C = 1300 kJ
The answer is <span>1,314,718 J</span>
Answer:
No
Explanation:
No, but the total mass of reactants must equal the total mass of products to be a balanced equation.
Example: Consider the following reaction ...
3H₂ + N₂ => 2NH₃ and 'amu' is atomic mass units (formula weights from periodic table)
In terms of molecules, there are 4 molecules on the left (3 molecular hydrogens (H₂) and 1 molecular nitrogen (N₂) and 2 molecules of ammonia on the right side of equation arrow. ∑reactant molecules ≠ ∑product molecules.
In terms of mass of reactants & mass of products, the 3H₂ + N₂ => 6amu + 28amu = 34amu & mass of products (2NH₃) => 2(14amu) + 6(1amu) = 34amu for sum of product masses.
∑mass reactants = ∑mass products <=> 34amu = 34amu.
The expression '∑mass reactants = ∑mass products' as applied to chemical equations is generally known as 'The Law of Mass Balance'.