Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
The answer to this question would be true.
It posed a contradiction to Quantum Theory
To know the density you also need to know the volume of the rock.
C(HClO) = 0,3 M.
<span>V(HClO) = 200 mL = 0,2 L.
n(HClO) = </span>c(HClO) · V(HClO).
n(HClO) = 0,06 mol.<span>
c(KClO</span>) =
0,2 M.
<span>V(KClO) = 0,3 L.
n(KClO) = 0,06 mol.
V(buffer solution) = 0,2 L + 0,3 L = 0,5 L.
ck</span>(HClO) = 0,06 mol ÷ 0,5 L = 0,12 M.
cs(KClO) = 0,06 mol ÷ 0,5 L = 0,12 M.<span>
Ka(HClO</span>) =
2,9·10⁻⁸.<span>
This is buffer solution, so use Henderson–Hasselbalch
equation:
pH = pKa + log(cs</span> ÷ ck).<span>
pH = -log(</span>2,9·10⁻⁸) + log(0,12 M ÷ 0,12 M).<span>
pH = 7,54 + 0.
pH = 7,54</span>