1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
10

6(5k-8)-20=11(2k-3)+3k

Mathematics
2 answers:
DochEvi [55]3 years ago
6 0
The answer for this question is k=7
stira [4]3 years ago
4 0
30k-68=25k-33
30k-25k=-33+68
5k=35
k=7
You might be interested in
4(5x – 9) = -2(x + 7) solve and justify each step
Alexandra [31]

Step-by-step explanation:

4(5x-9)=-2(x+7)

4*5x-4*9=-2*x-2*7

20x-36=-2x-14

20x+2x=-14+36

22x=22

x=22/22

x=1

5 0
3 years ago
Help meeeee doooo thissss
lesya692 [45]

Answer:

B:  x=-5  and x=4

Step-by-step explanation:

f(x)= x^2 + x -20

To find the zeros we replace f(x) with 0

0= x^2 + x -20

now we solve for x

LEts factor x^2 + x -20

sum is +1  and product is -20

5 * (-4)= -20

5 + (-4) = +1

x^2 + 5x - 4x - 20 = 0

(x^2 + 5x)+(- 4x - 20) = 0

x(x+5) -4 (x+5) = 0

(x-4)(x+5)=0

Set each factor =0 and solve for x

x- 4 =0 so x=4

x+5 =0 so x=-5

x=-5  and x=4

3 0
3 years ago
Please help
trapecia [35]
Between emma and dave, we have 7/10ths of the money

3x + 2x = 7/10

5x = 7/10

x=(7/10)/5

x= 14/100

Dave will get 28/100 or 7/25ths

Check : 30/100      Colin
            42/100      Emma 
         + 28/100     Dave
           -----------
           100/00

7 0
3 years ago
(05.01)
GarryVolchara [31]
3x - 6y = 72...reduce by dividing everything by 3
x - 2y = 24...notice how this is exactly the same as the other equation....means that the lines are the same line...meaning infinite solutions
3 0
3 years ago
Read 2 more answers
Evaluate the following integral (Calculus 2) Please show step by step explanation!
barxatty [35]

Answer:

\dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{x^2}{\sqrt{25-x^2}}\:\:\text{d}x

Rewrite 25 as 5²:

\implies \displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=5 \sin \theta

\begin{aligned}\implies \sqrt{5^2-x^2} & =\sqrt{5^2-(5 \sin \theta)^2}\\ & = \sqrt{25-25 \sin^2 \theta}\\ & = \sqrt{25(1-\sin^2 \theta)}\\ & = \sqrt{25 \cos^2 \theta}\\ & = 5 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=5 \cos \theta

\implies \text{d}x=5 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x & = \int \dfrac{25 \sin^2 \theta}{5 \cos \theta}\:\:5 \cos \theta\:\:\text{d}\theta \\\\ & = \int 25 \sin^2 \theta\end{aligned}

Take out the constant:

\implies \displaystyle 25 \int \sin^2 \theta\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad \cos (2 \theta)=1 - 2 \sin^2 \theta

\implies \displaystyle 25 \int \dfrac{1}{2}(1-\cos 2 \theta)\:\:\text{d}\theta

\implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\cos kx$}\\\\$\displaystyle \int \cos kx\:\text{d}x=\dfrac{1}{k} \sin kx\:\:(+\text{C})$\end{minipage}}

\begin{aligned} \implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta & =\dfrac{25}{2}\left[\theta-\dfrac{1}{2} \sin 2\theta \right]\:+\text{C}\\\\ & = \dfrac{25}{2} \theta-\dfrac{25}{4}\sin 2\theta + \text{C}\end{aligned}

\textsf{Use the trigonometric identity}: \quad \sin (2 \theta)= 2 \sin \theta \cos \theta

\implies \dfrac{25}{2} \theta-\dfrac{25}{4}(2 \sin \theta \cos \theta) + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{25}{2}\sin \theta \cos \theta + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\sin \theta \cdot 5 \cos \theta + \text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{5} \textsf{ and }5 \cos \theta = \sqrt{25-x^2}:

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\cdot \dfrac{x}{5} \cdot \sqrt{25-x^2} + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

\textsf{Substitute back in } \theta=\arcsin \left(\dfrac{x}{5}\right) :

\implies \dfrac{25}{2} \arcsin \left(\dfrac{x}{5}\right) -\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

Take out the common factor 1/2:

\implies \dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Learn more about integration by trigonometric substitution here:

brainly.com/question/28157322

6 0
2 years ago
Other questions:
  • Can someone help me please?!?
    10·1 answer
  • State the slope and y-intercept for -y+8x=2x
    6·2 answers
  • A random sample of 2 measurements is taken from the following population of values: 0, 1, 3, 4, 7. What is the probability that
    14·1 answer
  • The value of 3 in 46.132 is how many times the value of the 3 in 8.553<br><br>A 10<br>B 1 <br>C 1/10
    6·1 answer
  • Following Quotient expression
    15·1 answer
  • Please help me on questions 7 and 8!! Thanks so much for any help!
    13·1 answer
  • If 43 of the 148 reams of paper purchased by a department are used, what is the percentage that remains?
    15·2 answers
  • Please can someone help asap!
    13·1 answer
  • The portions of a house that need to be heated can be modeled by one rectangular prism with a length of 45 feet, a width of 20 f
    8·1 answer
  • If f(x) = 3x+2, find f(f¹(14))
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!