The trend of ionization energy in the periodic table is decreasing from right to left and from top to bottom. In this case, we are given with elements <span>K, Ca, Ge, Se, Br, Kr and see the periodic table to check the trend. The answer from highest to lowest Kr, Br, Se, Ge, Ca, and K</span>
Answer:
A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.
Step by Step Explanation?
Boyle's law states that in constant temperature the variation volume of gas is inversely proportional to the applied pressure.
The formula is,
P₁ x V₁ = P₂ × V₂
Where,
P₁ is initial pressure = 1 atm
P2 is final pressure = ? (Not Known)
V₁ is initial volume = 10 L
V₂ is final volume = 15 L
Now put the values in the formula,
\begin{gathered}\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67\end{gathered]
Therefore, the answer is 0.67 atm.
Here, we are required to determine the volume of the earth which is 1.08326 × 10¹² km³ in liters.
<em>The volume of the earth is approximately</em>,
, 1.08326 × 10²⁴ liters
By conversion factors;
- <em>1dm³ = 1liter</em>
- However; <em>1km = 10000dm = 10⁴ </em><em>dm</em>
- Therefore, 1km³ = (10⁴)³ dm³.
Consequently, 1km³ = 10¹²dm³ = 10¹²liters.
The conversion factor from 1km³ to liters is therefore, c.f = 10¹²liters/km³
Therefore, the volume of the earth which is approximately, 1.08326 × 10¹² km³ can be expressed in liters as;
<em>1.08326 × 10¹² km³ × 10¹²liters/km³ </em>
The volume of the earth is approximately,
1.08326 × 10²⁴ liters.
Read more:
brainly.com/question/16814684
When we have:
Zn(OH)2 → Zn2+ 2OH- with Ksp = 3 x 10 ^-16
and:
Zn2+ + 4OH- → Zn(OH)4 2- with Kf = 2 x 10^15
by mixing those equations together:
Zn(OH)2 + 2OH- → Zn(OH)4 2- with K = Kf *Ksp = 3 x 10^-16 * 2x10^15 =0.6
by using ICE table:
Zn(OH)2 + 2OH- → Zn(OH)4 2-
initial 2m 0
change -2X +X
Equ 2-2X X
when we assume that the solubility is X
and when K = [Zn(OH)4 2-] / [OH-]^2
0.6 = X / (2-2X)^2 by solving this equation for X
∴ X = 0.53 m
∴ the solubility of Zn(OH)2 = 0.53 M
Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.