1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
11

What's a consecutive side

Mathematics
1 answer:
vodomira [7]3 years ago
6 0
Consecutive sides are any two sides that meet at an endpoint or an angle. Recognizing consecutive sides is important for many functions in geometry, as it helps identify segments and angles.
You might be interested in
The following set of ordered pairs represent a function:
MAXImum [283]
Eeeeeeeeeeeeeeeeeeeeeeeee
4 0
3 years ago
St<br>Question 1<br>Calculate the derivative of y = f(x) = 3 x(4x + 7)<br>Your answer:<br><br>​
kondor19780726 [428]

Answer:

\frac{dy}{dx} = 24 x + 21

Step-by-step explanation:

<u><em>Explanation:-</em></u>

Given that the function

      y = f(x) = 3 x ( 4 x + 7)

     y  = 3 x ( 4 x + 7)  

    y = 12 x² + 21 x ..(i)

Differentiating equation (i) with respective to 'x' , we get

\frac{dy}{dx} = 12 (2x) +21 (1)

\frac{dy}{dx} = 24 x + 21

6 0
3 years ago
Generate the nest three terms of each arithmetic sequence shown below.
o-na [289]

Answer:

A)2,6,10

B)2,-6,-18

C)-1,-3,-5

Step-by-step explanation:

<u>A)a1=-2 and d=4</u>

We know that the arithmetic sequence formula is

a_{n}=a_{1}+(n-1)d

Now

a_{2}=a_{1}+(2-1)d

a_{2}=a_{1}+(1)d

Substituting the given value we get

a_{2}= -2+(1)4

a_{2}= -2+4

a_{2}= 2

------------------------------------------

Similarly

a_{3}=a_{1}+(3-1)d

a_{3}=a_{1}+(2)d

Substituting the given value we get

a_{3}= -2+(2)4

a_{3}= -2+8

a_{3}= 6

-------------------------------------------------

a_{4}=a_{1}+(4-1)d

a_{4}=a_{1}+(3)d

Substituting the given value we get

a_{4}= -2+(3)4

a_{4}= -2+16

a_{4}= 10

-------------------------------------------------------------------------------------------

<u>B</u><u>  a_n=a_{(n-1)}-8  with a_1=10</u>

a_2=a_{(2-1)}-8

a_2=a_{1}-8

Substituting the given value

a_2= 10-8

a_2=2

---------------------------------------------------------------------

a_3=a_{(3-1)}-8

a_3=a_{2}-8

Substituting the  value

a_3=2-8

a_3= -6

---------------------------------------------------------------------

a_4=a_{(4-1)}-8

a_4=a_{3}-8

Substituting the  value

a_4= -6-8

a_4= -14

-------------------------------------------------------------------------------------------

<u>C) a_1=3, a_2=1</u>

Here the difference is -2

the arithmetic sequence formula is

a_{n}=a_{1}+(n-1)d

Now

a_{3}=a_{1}+(3-1)d

a_{3}=a_{1}+(2)d

Substituting the value we get

a_{3}= 3+(2)-2

a_{3}= 3-4

a_{3}= -1

------------------------------------------------------------------------------

a_{4}=a_{1}+(4-1)d

a_{4}=a_{1}+(3)d

Substituting the value we get

a_{4}= 3+(3)-2

a_{4}= 3-6

a_{4}= -3

----------------------------------------------------------------------------------

a_{5}=a_{1}+(5-1)d

a_{5}=a_{1}+(4)d

Substituting the value we get

a_{5}= 3+(4)-2

a_{5}= 3-8

a_{5}= -5

4 0
3 years ago
Solve the system of linear equations.
sweet-ann [11.9K]

Answer:

  • dependent system
  • x = 2 -a
  • y = 1 +a
  • z = a

Step-by-step explanation:

Let's solve this by eliminating z, then we'll go from there.

Add 6 times the second equation to the first.

  (3x -3y +6z) +6(x +2y -z) = (3) +6(4)

  9x +9y = 27 . . . simplify

  x + y = 3 . . . . . . divide by 9 [eq4]

Add 13 times the second equation to the third.

  (5x -8y +13z) +13(x +2y -z) = (2) +13(4)

  18x +18y = 54

  x + y = 3 . . . . . . divide by 18 [eq5]

Equations [eq4] and [eq5] are identical. This tells us the system is dependent, and has an infinite number of solutions. We can find them in terms of z:

  y = 3 -x . . . . solve eq5 for y

  x +2(3 -x) -z = 4 . . . . substitute into the second equation

  -x +6 -z = 4

  x = 2 - z . . . . . . add x-4

  y = 3 -(2 -z)

  y = z +1

So far, we have written the solutions in terms of z. If we use the parameter "a", we can write the solutions as ...

  x = 2 -a

  y = 1 +a

  z = a

_____

<em>Check</em>

First equation:

  3(2-a) -3(a+1) +6a = 3

  6 -3a -3a -3 +6a = 3 . . . true

Second equation:

  (2-a) +2(a+1) -a = 4

  2 -a +2a +2 -a = 4 . . . true

Third equation:

  5(2-a) -8(a+1) +13a = 2

  10 -5a -8a -8 +13a = 2 . . . true

Our solution checks algebraically.

6 0
3 years ago
Please help i am not passing my math class i will give you the brainliest I am struggling
mash [69]

Answer:

x=-6

Step-by-step explanation:

(8x-15)=(3x-45)

4 0
3 years ago
Other questions:
  • The value of 4c + 5g if c = 2 and g = 1.5
    7·1 answer
  • At what elevation does the atomosphere become too thin to breath
    14·1 answer
  • A tree diagram is simply a way of representing a sequence of events. True or False.
    15·1 answer
  • What are the solutions to 2x squared +7x=4​
    12·1 answer
  • If cos ⁡x=−4/5, and 180°
    5·1 answer
  • What is the value of the expression?<br> -16+ 12 <br>(A)-28 <br>(B)-4 <br>(C)4 <br>(D)28 ​
    11·1 answer
  • Simplify this expression: 5 + 2b - 2
    9·2 answers
  • 11(7+4)=__•7+11•__<br> Help pls
    9·1 answer
  • Please help its 50 points
    5·2 answers
  • Bob's gift shop sold a record number of cards for Mother's Day. One salesman sold 22 cards, which was 20% of the cards sold for
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!